道路構造物への混和材高含有コンクリートの適用

(株) 大林組 正会員 〇新村 亮 (株) 大林組 正会員 山下 徹 (株) 大林組 正会員 三浦律彦

1. 概要

建設資材生産に伴う二酸化炭素排出量は 国内の全排出量の 8%をしめ、セメント生産 時の排出量はその内の 40%をしめる.この様 にコンクリート製造に伴う CO_2 排出量の削 減は重要な課題である ¹⁾. そこで, CO_2 排出 量の少ない混和材を高含有させた低炭素型 のコンクリートを道路構造物へ試験的に適 用した.ここでは適用にあたり事前に行った

施工試験と実工事試験適用での品質管理結果を報告する.

2. 使用材料・配合

混和材高含有コンクリートに使用した材料を表-1に、コンクリートの配合仕様を表-2に示す。セメントの代わりに混和材を多く使用することによって、一般的なコンクリートに比べ CO_2 排出量を約75~65%削減している。今回は設計基準強度 24、 $21N/mm^2$ の 2 種類の配合を使用した。なお、材齢 28 日で設計基準強度を満足するように室内試験練りにより W/B を決定した。

3. 施工試験

施工試験では、生コンクリート工場で製造した コンクリートをアジテータ車で運搬後、各種の試験を行った

(表-3). 強度については、標準養生供試体以外にブロック試験体、スラブ試験体のコア強度を測定した. スラブ試験体には①の配合を使用し、養生を3種類変えて、表面性状の観察、強度、表面の緻密さの指標として透気係数の測定を行った.

フレッシュ性状の経時変化を表-4 に示す. コンクリート温度が 30℃程度と高いにもかかわらず, 出荷 90 分後のスランプロスは 4cm 程度であり, 空気量も安定している. 標準養生供試

体の圧縮強度 (**表**−**5**) は材齢 28 日で設計基準強度を十分に満足した.

ブロック試験体のコア強度試験結果を表-6 に示す. 上部の強度は やや低いものの、いずれのコアも設計基準強度を十分に上回って

表-1 混和材高含有コンクリート使用材料

使用材料		記号	仕様	密度
				g/cm ³
普ù	 通ポルトランドセメント	С		3.16
混和材	高炉スラグ微粉末		ブレーン値 4000cm²/g	
	シリカフューム	BP	ジルコニア起源	2.23
細竹	骨材	S	石灰砕砂・山砂混合	2.62
粗帽	骨材	G	石灰砕石	2.66
AE 減水剤		WR		_

表-2 混和材高含有コンクリートの配合仕様

配合 名	設計基 準強度 (N/mm²)	スランプ (cm)	W/B (%)	C/B (%)	CO ₂ 排出量 (kg/m³)
1	24	15	45.0	25	80
2	21	18	47.0	15.0	58

B=C+BP

表-3 施工試験項目

項目	試験方法		
スランプ 空気量 コンクリート温度	出荷時,荷卸時, 出荷後 60・90 分後		
圧縮強度	標準養生 7, 28, 56 日		
ブロック試験体 (1m×1m×1m)	コア強度(材齢 65 日)		
スラブ試験体 (2m×2m×0.2m)	コア強度(材齢 65 日), テストハンマー, (材齢 51 日) 原位置透気試験 (トレント法) (材齢 51 日) 養生条件: A:養生なし, B:膜養生 C:膜養生+養生マット(1週間)		

表-4 フレッシュ性状経時変化

配合	測定 工程	スラ ンプ (cm)	空気 量 (%)	コンクリー ト温度(℃)
	出荷	19.5	4.9	30
1	49 分後	16.5	3.9	31
<u>(I)</u>	60 分後	17.5	4.5	31
	90 分後	15.5	5.1	31
	出荷	21.5	4.8	30
2	40 分後	18.0	5.1	31
4	60 分後	18.0	5.2	31
	90 分後	17.0	5.0	31

表-5 標準養生供試体圧縮強度

配合	圧縮強度(N/mm²)			
	材齢 7日	28 目	56 目	
1	24.6	34.3	40.4	
2	17.6	26.8	29.5	

キーワード 混和材、低炭素、道路構造物、コンクリート構造物

連絡先 〒108-8502 東京都港区港南 2-15-2 品川インターシティ B 棟 Tel 03-5769-1322

いる. スラブ試験体の試験結果は表-7に示す. 膜養生と養生マットを併用した場合,表面ひび割れの発生は認められなかった. コア強度,テストハンマー強度,透気係数等全般にわたって,膜養生と養生マットを併用した場合が最も良好な結果となった.

4. 道路構造物への適用結果

混和材高含有コンクリートを道路構造物 工事へ試験的に適用した. ①配合を掘割部 鉄筋コンクリート底版へ, ②配合を舗装下 部の無筋のレベル調整用調整コンクリート へ適用した.

コンクリートは生コンクリート工場で製造し、アジテータ車で運搬した.底版はポンプ車のブームで打設し、調整コンクリートは定置式ポンプを使用しゅ125mm、水平換算距離300mの配管で圧送した.コンクリートの粘性が通常よりもやや高いものの、圧送、打込み、締固め、仕上げとも通常のコンクリートとほぼ同様に問題なく行うことができた.養生には事前の施工試験の結果にもとづき、養生剤と養生マットを併用した養生を行った結果、ひび割れ等の発生は見られなかった.

コンクリートの品質試験結果を図-1~3 に示す. 試験は工場での出荷時,現場での荷卸時及び,調整コンクリートでは筒先で行い,アジテータ車の最初の3台は1台毎に,以後5台毎に行った. コンクリート温度は底版打設時で25℃,調整コンクリート打設時で23℃程度であった. 荷卸時でのスランプ,空気量は基準値内に管理することができた. また,圧縮強度は設計基準強度を十分に満足することができた. ポンプ圧送による品質変化はスランプで1.5cm程度の低下が認められたものの,空気量,圧縮強度の変化はほとんどなかった.

5. まとめ

施工試験,実構造物への適用によって,混和 材高含有コンクリートを安定した品質で製造 することが可能であり,通常のコンクリートと 同様に施工できることが明らかとなった.

参考文献

1) 竹田他: CO₂ 排出量を削減した低炭素型の コンクリートの開発, 土木施工, 2010.9.

表-6 ブロック試験体コア強度試 験結果(N/mm²)

配合	1	2		
上部	28.2	24.3		
中部	35.8	26.3		
下部	37.6	27.8		
平均	33.1	26.1		

表-7 スラブ試験体試験結果

供試体	A	В	С
表面性状	微細な表面ひ び割れが発生	一部に微細な表面 ひび割れが発生	異常 無し
コア強度(N/mm²)	32.0	31.1	36.1
テストハンマー 強度(N/mm²)	25.3	29.9	29.6
透気係数(m²)×10 ⁻¹⁶	0.041	0.15	0.018

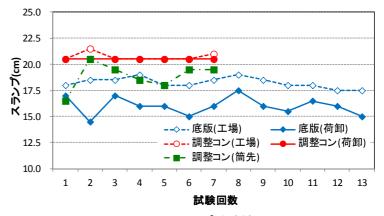


図-1 スランプ試験結果

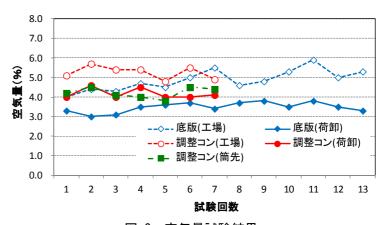


図-2 空気量試験結果

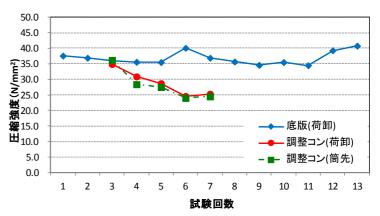


図-3 圧縮強度試験結果