膨張コンクリートの凍結融解抵抗性

電気化学工業(株) 正会員 〇庄司 慎 電気化学工業(株) 正会員 栖原 健太郎 電気化学工業(株) 正会員 平井 吉彦 電気化学工業(株) 吉野 亮悦

1. はじめに

膨張コンクリートの凍結融解抵抗性は、膨張材の種類、空気量、拘束の有無、骨材の種類などの影響を受ける. 1)~5) 今回、低添加型のカルシウムサルフォアルミネート・石灰複合系膨張材を用いた膨張コンクリートの圧縮強度、空気量および拘束の程度を要因として、膨張コンクリートの凍結融解抵抗性に与える影響を検討した.

2. 実験概要

表 1 に使用材料を、表 2 に実験要因、表 3 に実験水準とコンクリートの配合を、それぞれ示す。表 3 の PL は普通コンクリート、EX は膨張コンクリートを表している。水準 $1 \sim 3$ は、凍結融解抵抗性に及ぼす圧縮強度の影響を評価するため、W/Cを 33.5、43.5、53.5%とした。水準 1 、4、5 は、凍結融解抵抗性に及ぼす空気量の影響を評価する

ため、空気量を 3.5, 5.0, 6.5%とした.以上の水準 $1 \sim 5$ は無拘束条件下で OPC を使用した. また、OPC を使用した水準 1 と LPC を使用した水準 6 は、鉄筋比を 3 通りに変化させた. 鉄筋比は、表 2 に示すように、JIS A 6202 付属書 2 (参考)に規定されている鉄筋比が 0.95%の A 法を基準として増減させた 3 通りを設定した.

コンクリートの練混ぜは 20°Cの環境下で行い,所定の空気量に調整した.

圧縮強度試験は、JIS A 1108 に準 じた. 凍結融解試験は、JIS A 1148 に準じ、水中凍結融解試験方法であ

表 1 使用材料

2. 文用材料						
項目	品名					
水 (W)	水道水					
セメント (C)	普通ポルトランドセメント (OPC)					
E > > (C)	低熱ポルトランドセメント (LPC)					
膨張材(Ex)	カルシウムサルフォアルミネート・					
形成的 (EX)	石灰複合系膨張材					
細骨材 (S)	姫川水系産川砂					
粗骨材 (G)	姫川水系産川砂利(Gmax=25mm)					
混和剤	リグニンスルホン酸化合物の AE 減水剤					
化工工工工工	アルキルエーテル系界面活性剤の AE 剤					

表 2 実験要因

	X = 7,50,X =								
セメント	W/C(%)	空気量(%)	拘束の程度(鉄筋比:%)						
	33.5	3.5	OPC(水準1)	LPC(水準6)					
OPC			0.00	0.00					
	43.5	5.0	0.66	0.50					
LPC			0.95	0.95					
	53.5	6.5	1.77	1.50					

表3 コンクリートの配合および実験水準

	表3 コンケリートの配占および美級小卒										
水準	タ 秋	W/C	W/C s/a (%)	Air (%)	単位量 (kg/m³)			拘束の	圧縮強度		
		(%)			W	С	Ex	種類	有無	(N/mm ²)	
水準1	1-PL	53.5	48.0	5.0	167	312	0	OPC	有	43.5	
	1-EX	53.5	48.0	5.1	167	292	20	OPC	有	41.5	
水準2	2-PL	43.5	46.2	5.2	167	384	0	OPC	無	55.7	
	2-EX	43.5	46.2	4.9	167	364	20	OPC	無	52.6	
水準3	3-PL	33.5	43.1	5.4	167	499	0	OPC	無	66.4	
	3-ЕХ	33.5	43.1	5.1	167	479	20	OPC	無	65.3	
水準4	4-PL	53.5	48.0	3.5	167	312	0	OPC	無	45.6	
	4-EX	53.5	48.0	3.9	167	292	20	OPC	無	41.8	
水準5	5-PL	53.5	48.0	6.2	167	312	0	OPC	無	39.5	
	5-EX	53.5	48.0	6.5	167	292	20	OPC	無	36.2	
水準6	6-PL	41.0	50.0	5.1	165	401	0	LPC	有	62.9	
	6-EX	41.0	50.0	5.4	165	381	20	LPC	有	64.7	

キーワード 膨張コンクリート,膨張材,凍結融解,耐凍害性,圧縮強度,空気量

連絡先 〒949-0393 新潟県糸魚川市青海 2209 電気化学工業㈱青海工場 セメント・特混研究部 TEL025-562-6301

る A 法を採用した. 試験開始材齢は、OPC を用いた水準 $1 \sim 5$ は 28 日、LPC を用いた水準 6 は 91 日とした. 試験開始材齢の圧縮強度を表 3 に併記する. 動弾性係数は、JIS A1127 に準じて測定し、相対動弾性係数を求めた.

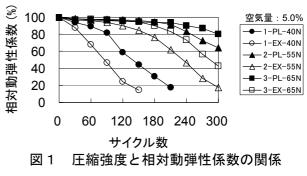

3. 実験結果

図1に無拘束条件下で、圧縮強度を変化させた場合の 凍結融解試験の結果を示す. 凡例中の数字は圧縮強度レベルである. 普通コンクリート、膨張コンクリートとも に、圧縮強度が大きくなるほど相対動弾性係数の減少は 小さくなり、凍結融解抵抗性は向上した. また、膨張コンクリートの相対動弾性係数は、普通コンクリートに比べて早くに減少した.

図2に無拘束条件下で、空気量を変化させた場合の凍結融解試験の結果を示す.凡例中の数字は空気量である.空気量の増加に従い、相対動弾性係数の減少は小さくなり、凍結融解抵抗性は向上した.また、圧縮強度の影響と同様に、膨張コンクリートの相対動弾性係数は、普通コンクリートに比べて早くに減少した.

以上の結果より,無拘束条件下では圧縮強度,空気量の増加によって,凍結融解抵抗性が向上することが確認された.

拘束の程度を変化させた場合の凍結融解試験の結果を,図3に示す.凡例中の数字は鉄筋比である.OPC,LPC 共に,拘束を与えた供試体は,いずれも300サイクルにおける相対動弾性係数が60%以上であった.図3a)に示すように,鉄筋比が0.66%程度のわずかな拘束を導入することで,凍結融解抵抗性が大きく向上した.また,普通コンクリートと膨張コンクリートによる相対動弾性係数の差異は認められず,拘束の程度による差異も認められなかった.

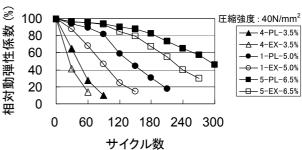


図2 空気量と相対動弾性係数の関係

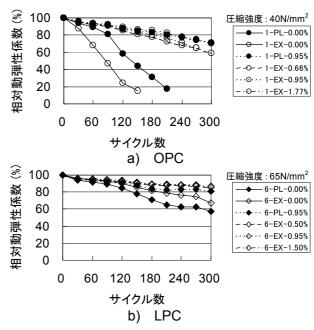


図3 拘束の程度と相対動弾性係数の関係

4. まとめ

低添加型のカルシウムサルフォアルミネート·石灰複合系膨張材を用いた膨張コンクリートの凍結融解抵抗性について実験的に検討した結果,以下の知見を得た.

- (1) 無拘束条件下においては、圧縮強度、空気量を増加することで、凍結融解抵抗性は向上した.
- (2)無拘束条件下では凍結融解抵抗性に優れない場合でも、拘束を導入することで、凍結融解抵抗性は向上することが確認された.

参考文献

- 1) 国府勝郎: 膨張コンクリートの凍結融解抵抗性に関する基礎研究, 土木学会論文報告集, No.334, pp.145-154, 1983
- 2) 日本セメント中研:膨張コンクリートの耐久性, セメント工業, No.197, pp.13-20, 1986
- 3) 堀田宣道, 北川一孝, 林幹夫: 膨張コンクリートの凍結融解抵抗性, セメント・コンクリート, No.504, pp.24-30, 1989
- 4) 高橋幸一, 浅野研一, 辻野英幸, 豊田邦男: 膨張コンクリートの耐凍害性に及ぼす影響とその機構について, 「膨張コンクリートによる構造物の高機能化/高耐久化」に関するシンポジウム, pp.79-84, 2003
- 5) 水野津与志, 伊澤暢恭, 中村泰誠: 膨張コンクリートの膨張が及ぼす組織構造の変化と凍結融解抵抗性, 日本道路会議論文集, Vol.26th, 14034, 2005