高炉スラグ細骨材とフライアッシュを使用したコンクリートの物性について

(株)関電パワーテック正会員○峯秀和JFE ミネラル(株)正会員吉澤千秋ミョウケン生コンクリート(株)高田敏

1. はじめに

近年、良質な天然骨材の枯渇や環境保全の観点から,高炉スラグ砂(以下 BS という)や四国・九州などではフライアッシュ(以下 FA という)を細骨材補充混和材とし採用されている.1)今回 BS と砕砂の組合せに対して、細骨材の一部を FA に置換した配合について、基本性状および流動性状を検証するものである.

2. 実験概要

ミョウケン生コンクリートでは、BS と砕砂に FA を砂置換 $40 \log$ 使用した配合について、2011 年 7 月より JIS 標準化を行い出荷している.

納入現場より、流動性が良いとの評価を得ているが、目視性状による評価となっている. 石井氏らはスランプ試験後の試料を用い、特別な器具を用いずスランプ板にタンピングを与え、評価する方法を提案されており²⁾、本検証では、通常のフレッシュ試験に加え、前記にて提案されている試験を行い、流動性状の検証を行った.

表-1 に本試験使用材料、表-2 に試験練り配合、表-3 に試験方法を示す.

表-1 使用材料一覧表

	11111 5 74		
記号	材料名称	密度	FM
BB	高炉B種セメント	3.04	_
FA	フライアッシュ Ⅱ 種	2.25	_
S1	砕砂(砂岩系)	2.65	2.74
S2	高炉スラグ細骨材	2.74	2.40
G1	砕石2010	2.68	合成7:3
G2	砕石1505	2.68	2.65
AD	高機能AE減水剤		_
ΑE	AE助剤	_	_

3. 結果と考察

スランプ、空気量ともに運搬ロスを考慮し、10.5 ± 1.5 cm、4.8% ± 1.0 % として試験練りを実施した. 表 -4 にフレッシュ試験と圧縮試験結果を示す. 圧縮強度では BFA が 28 日強度でやや高い結果となった. 表 -5 にタンピング試験結果を示す. なお、3 配合とも同

一単位水量で設定したが、BFA では他と比べてスランプが 2.3cm 大きく 4kg 減とした.

タンピング後スランプフロー350mm 時性状写真を写真-1に、タンピングによるスランプ進行と円形保持状況を図-1に、各スランプフロー時のタンピング回数の関係を図-2に示す.

表-2 配合条件

区分	区分 配合名称	S/a	単位量 kg/m³								
			BB	FA	W	S1	S2	G1	G2	AD	AE
ВВ	W/C58%-8-20BB	43.0%	286	ı	166	0	792	743	318	C× 1.00%	2.5A
BFS	W/C58%-8-20BB (BFS)	43.0%	286	1	166	555	246	743	318	C× 1.00%	5.0A
BFA	W/C58%-8-20BB (BFS+FA)	42.5%	279	40	162	538	238	737	316	C× 1.00%	6.5A

※AE 剤 1 A は C×0.002%とする

表-3 測定項目と方法

測定項目	方法等
空気量	JIS A 1128による
コンクリートのブリーディング試験	JIS A 1123による
スランプフロー	スランプコーン引き上げ後、スランプフロー250,300,350,400,450時で以下の項目について測定実施
スランプ	JIS A 1101により、各スランプフロー時 のスランプを計測
上部円形直径	各スランプフロー時に試料上部の円 形有無を調べ、また、その直径を計測
タンピング回数	質量1.2kgの木製の棒を50cmからスランプ板の4隅に順に自然落下させてタンピングを行う.各スランプフローに達するために必要なタンピング回数を計測する

表-4 フレッシュ試験と圧縮強度試験結果

区分	フレッ	シュ試験	 検結果	圧縮強度(標準養生)N/mm²			
	スランプ [°] cm	空気量	コンクリート温度	σ7(平均)	σ28(平均)		
BB	9.0	4.2%	18°C	18.6	33.9		
BFS	10.5	4.0%	18°C	19.1	34.6		
BFA	10.0	4.0%	18°C	20.9	35.9		

表-5 タンピング試験結果

区分	タンピング試験結果									
	タンピング後スランププローcm	初期	250mm	300mm	350mm	400mm	450mm			
	タンピング数(回)	0	12	33	47					
BB	上部円形直径cm	16.5	17.0	測定不可	測定不可					
	スランプcm	9.0	12.3	16.2	19.6					
BFS	タンピング数(回)	0	9	23	39	53	-			
	上部円形直径cm	17.5	17.5	17.0	18.0	20.5	測定不可			
	スランプcm	10.5	12.5	16.0	19.2	21.5	23.0			
BFA	タンピング数(回)	0	7	24	40	58	74			
	上部円形直径cm	12.2	12.1	12.1	12.1	13.3	15.4			
	スランプcm	9.8	11.0	15.7	19.2	21.9	23.5			

キーワード 高炉スラグ細骨材、フライアッシュ、フレッシュ性状、タンピング試験

連絡先 〒552-0007 大阪市港区弁天1丁目2番1-1800号 (オーク1番街18F) TEL06-4395-1657

写真-1 配合区分 スランプフロー350mm 時性状

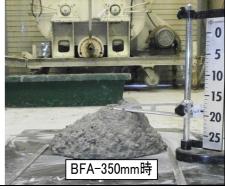


図-1 タンピングによるスランプ進行と円形保持

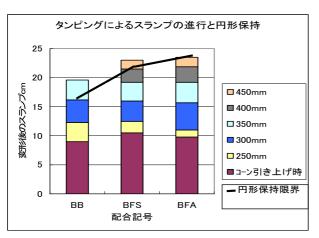
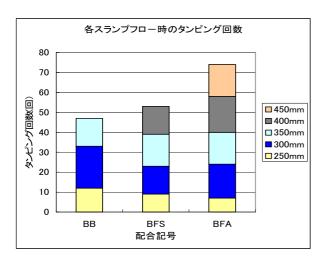
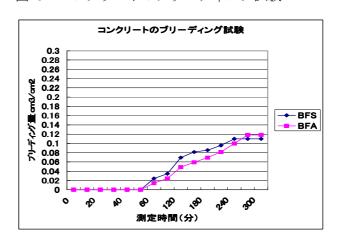



図-2 各スランプフロ-時のタンピング回数



タンピング結果より、BFA>BFS>BBで円形保持状況が良いことが確認でき、BFAでは450mm時でも分離抵抗性が高く、総粉体量増とFAによる状態改善効果が働いたと考えられる.

BFS と BFA のコンクリートブリーディング試験結果を図-3 に示す. 同試験結果では、ブリーディング量に大きな差はなかったが、タンピング試験では、BFS350mm 時点でブリーディングが確認された.

BFA では 450mm 時点でもブリーディングは確認されなかった.

図-3 コンクリートのブリーディング試験

4. まとめ

BS と FA を組み合わせたコンクリート配合は以下のことが確認できた.

- ①BFS と BFA では、タンピングスランプフロー350mm までは、ほぼ同一の性状を示したが、それより大 きなスランプフローでは BFA での分離抵抗が高い ことが確認できた.
- ②BFA では、単位水量削減効果があり、材齢 28 日圧 縮強度でやや高めの結果となった.
- ③FA 砂置換 40kg 程度であれば、特別な AE 助剤を用いずとも、空気量調整ができることが確認できた.

【謝辞】本検討試験を行うに際して、多大なご協力及びご指導をいただいた戸田建設㈱、㈱フローリック、 ㈱扶和産業並びに㈱マーヴェリックに深く感謝いたします.

【参考文献】

- 1) 石井佑太、宇治公隆、上野敦: タンピング試験におけるワーカビリティの簡易評価方法の検討、コンクリート工学年次論文集、vol. 30, No. 2, 2008
- 2) 土木学会四国支部:フライアッシュを細骨材補充 混和材として用いたコンクリートの施工指針 (案),2003年3月