コンクリート表面にせん断キーを設けた AFRP 板水中接着曲げ補強 RC 梁の静載荷実験

(株) 楢崎製作所	正会員	○池下	雄哉	三井住友建設(株)	フェロー	三上 浩
室蘭工業大学大学院	正会員	栗橋	祐介	釧路工業高等専門学校	フェロー	岸 徳光

1. はじめに

本研究では、水中硬化型接着樹脂(以後、水中接着樹脂) と AFRP 板を用いた RC 梁の水中接着補強工法における AFRP 板の付着性能改善を目的として、コンクリート表面 にせん断キーを配置して AFRP 板水中接着曲げ補強した RC 梁の静載荷実験を実施した.

2. 実験概要

2.1 試験体概要

表1には、本実験に用いた試験体の一覧を示している. 表中の試験体名のうち、第1項目は施工・養生環境(A:気 中,W:水中)を示し,第2項目の英文字Gに付随する数 値はせん断キーの配置間隔 (mm) を示している.

図1には、RC 梁の形状寸法、配筋状況および補強概要 を示している. また, **表2**には, AFRP シートの力学的 特性値の一覧を示している。試験体は、断面寸法 150× 150 mm, 純スパン長 1.8 m の複鉄筋 RC 梁である。また、 AFRP 板は梁の下面に接着している.

実験時におけるコンクリートの圧縮強度は 38.3 MPa で あり、軸方向鉄筋の降伏強度は 378 MPa であった。図2 には、コンクリート表面のせん断キーの配置状況を示し ている。せん断キーの幅および深さは、せん断キーの配 置間隔によらずそれぞれ 10, 5 mm と設定した.

キーワード:AFRP 板,水中硬化型接着樹脂, RC 梁,せん断キー

室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX 0143-46-5225 連絡先:〒050-8585

2.2 RC 梁の水中接着補強方法および実験方法

RC 梁の水中接着補強は、予め RC 梁を水没させた状態 で水中接着樹脂と AFRP 板を用いて行った. なお, AFRP 板には予め AFRP 板表面に汎用の含浸接着樹脂を塗布し, その上に5号珪砂を260g/m²程度まんべんなく振り掛け て砂付き処理を施している。また、コンクリート表面に は深さ1mm 程度のブラスト処理を行った.

実験結果と考察

3.1 荷重-変位関係

図3には、各試験体における荷重-変位関係の実験結果 と計算結果の比較を示している。計算結果は、土木学会 コンクリート標準示方書に準拠して断面分割法により算 出したものである.なお、計算では AFRP 補強材とコン クリートの完全付着を仮定している.

図より、A 梁の場合には、実験結果は計算終局変位時 まで計算結果とほぼ同様の耐荷性状を示しており、上縁 コンクリートの圧壊後 AFRP シートの部分剥離が発生し, 最終的には計算耐力よりも高い荷重レベルで終局に至っ ていることが分かる。W梁の実験結果は、計算終局変位 近傍まで計算結果とほぼ同様の耐荷性状を示しており,最 終的には計算耐力と同程度の荷重レベルで AFRP 板の部 分剥離を生じている。その後、AFRP 板の部分剥離領域が 進展して全面剥離を生じている。

W-G60 梁の場合には、実験結果における最大荷重およ び最大荷重時変位が計算結果を上回っている。また、最 大荷重到達時に AFRP 板の部分剥離を生じ,全面剥離に より終局に至っている。W-G30梁の実験結果は計算終局

臣仁

▲ · · · · · · · · · · · · · · · · · · ·							
試験体名	施工・養生環境	せん断キー配置間隔 (mm)					
A 梁	気中	-					
W 梁		-					
W-G60 梁	水中	60					
W-G30 梁		30					

表2 AFRP シートの力学的特性値 (公称値)

繊維	保証	回っ	引張	弾性	破断
目付量	耐力	厚さ	強度	係数	ひずみ
(g/m ²)	(kN/m)	(mm)	(GPa)	(GPa)	(%)
280	392	0.193	2.06	118	1.75

変位近傍まで計算結果とほぼ同様の耐荷性状を示しており、最終的には、W梁と同様に計算耐力と同程度の荷重 レベルで AFRP 板の全面剥離を生じている。

これより, せん断キーの配置間隔を 60 mm とすること によって, AFRP 板水中接着曲げ補強 RC 梁の曲げ耐荷性 能を向上可能であることが明らかになった.

3.2 AFRP 補強材の軸方向ひずみ分布性状

図4には、計算終局変位時近傍における AFRP 補強材の 軸方向ひずみ分布性状を示している.また、計算結果は断 面分割法の結果に基づいて算出したものである.図より、 A, W, W-G60 梁の場合は実験結果と計算結果がほぼ対応 しており、この時点において、付着は十分確保されている ものと判断される.一方、W-G30 梁の場合には右側等せ ん断力区間において実験結果が計算結果を大きく上回っ ている.これは、後述するピーリング作用によって AFRP 板の部分剥離が生じていることによるものと推察される.

3.3 破壊性状

写真1には、各試験体の終局直前におけるひび割れ性状 を示している.写真より、いずれの試験体も上縁コンク リートが圧壊し、かつ載荷点近傍の下縁かぶり部に生じ た斜めひび割れが AFRP 補強材を下方に押し出して引き 剥がすピーリング作用の発生により、補強材が部分的に 剥離していることが分かる.

図5には、各試験体の等せん断力区間における AFRP 補 強材の剥離挙動の概要図を示している。A 梁の場合には、 AFRP シートの部分剥離は下縁かぶりコンクリートを付着 した状態で発生している。これに対し、W 梁の場合には、

図 5 各試験体の AFRP 補強材の剥離挙動

AFRP 板の部分剥離は梁下縁コンクリートの表層部で生じている.

一方,W-G60/30梁の場合には、AFRP板の部分剥離が、 水中接着樹脂との界面で発生していることを確認してい る.これは、せん断キーを配置することによってコンク リートと水中接着樹脂の付着性能が改善されたことによ るものと推察される.なお、W-G60梁と比較してW-G30 梁は早期に部分剥離が生じた.これは、せん断キーの配置 位置に曲げおよびせん断ひび割れが集中しやすく、W-G30 梁はせん断キーが多く配置されていることから、水中接 着樹脂に多数のひび割れが発生してAFRP板の剥離が助 長されたためと考えられる.

4. まとめ

- コンクリート表面にせん断キーを配置することにより、コンクリートと水中接着樹脂との付着性能は改善される。
- 2) 本実験の範囲内では、せん断キーの配置間隔を 60 mm とする場合において、曲げ耐力が大幅に向上する.