収縮を受けた高強度コンクリートはりのせん断破壊メカニズム

東京工業大学大学院	学生会員	○刑部	圭祐
東京工業大学大学院	正会員	松本	浩嗣
東京工業大学大学院	フェロー	二羽	淳一郎

1. はじめに

高強度コンクリートは,若材齢時に大きな自己収縮 が生じる.このような材料をRC部材に適用すると、自 己収縮による変形を鉄筋が拘束するために、コンクリ ートに無視できない引張応力が発生する.既往の研究 では、自己収縮によるRCはりの斜めひび割れ発生強度 の低下およびひび割れパターンの変化が確認されてい る¹⁾が, そのメカニズムは必ずしも十分ではない. また, 収縮がせん断補強筋に及ぼす影響に関する研究は少な く, さらなる検討を必要とする. 本研究では, 収縮を 受けた高強度RCはりのせん断破壊メカニズムの解明, およびせん断補強筋を有する高強度RCはりのせん断性 状の把握を目的として,画像解析システム²⁾を用いたRC はりの載荷試験を行った.

2. 実験概要

実験パラメータは自己収縮量およびせん断補強筋の 有無である.表1に実験ケースを示す.収縮量の異なる 2種類の高強度コンクリートを用いて, RCはりを作製し た. 収縮の大きい配合HAS(High Autogenous Shrinkage) には早強セメント,収縮の小さい配合LAS(Low Autogenous Shrinkage)には中庸熱セメント, 膨張材 (EX),および収縮低減剤(SRA)を用いた. 表2にコンク リートの配合を示す.いずれの配合もW/Bは0.23とし,

水水工来八子八子的	正五只	14/7	1 [[1] [[1] [[1]
東京工業大学大学院	フェロー	二羽	淳一郎

結合材質量の10%をシリカフュームで置換した.

図1に供試体概要図を示す. HAS-Wのせん断補強筋比 は0.21%である.いずれの供試体も,高強度鉄筋を引張 鉄筋に使用し、斜め引張破壊を呈するよう設計した.

打設直後から載荷試験前日までの間, コンクリートの 収縮・膨張ひずみおよびRCはりの鉄筋ひずみを測定し た. コンクリートの収縮・膨張ひずみの測定は供試体 と同時に作製した無拘束供試体により行い、重心位置 に設置した埋込み型ひずみ計により、コンクリートの 実ひずみおよび実温度を測定した. 無拘束供試体はRC はりと同一断面で、長さが600mmの無筋コンクリート である.

載荷試験における計測項目はRCはりの載荷荷重,ス パン中央および支点変位、コンクリートひずみ、鉄筋 ひずみである.また、載荷中は画像解析を行うため、 10kN毎に(ただし、斜めひび割れ発生荷重付近ではより 頻繁に), デジタルカメラにより供試体を撮影した.

3. 実験結果

3.1 収縮量測定結果および載荷試験結果

表2 コンクリートの示方配合

コンクリートの収縮・膨張ひずみを、測定された実 ひずみからコンクリートの熱膨張係数に実温度の増分 を乗じた温度ひずみを差し引くことで求めた.ただし、 コンクリートの熱膨張係数は10×10⁻⁶と仮定した.

表1 実験ケース

載荷試験育		のひずみ		載荷試験結果		せん断力レベル			
供試体名	無拘束供試体の コンクリート [μ]	RC はりの 引張鉄筋 [µ]	コンクリート の圧縮強度 [N/mm ²]	V _{cr} [kN]	V _c [kN]	V _u [kN]	$V_{cr}/f'_{c}^{1/3}$ [(N·mm) ^{2/3}]	$V_c/f'_c^{I/3}$ [(N·mm) ^{2/3}]	$V_u/f'_c^{1/3}$ [(N·mm) ^{2/3}]
HAS-WO	(-559.4)	-567.5	89.8	13.0	65.3	65.3	2.9	14.6	14.6
HAS-W	-559.4	-452.0	83.1	14.5	70.4	85.8	3.3	16.1	19.7
LAS-WO	180.2	-72.8	72.0	19.0	65.7	79.0	4.6	15.8	19.0
ひずみの名 表 4 せん断	F合は引張を正, 圧活 補強筋の分担せん	縮を負とする. い 断力	V _{cr} : 曲げひび害 (a) HA	削れ発生↑ .S-WO	せん断力, 割裂て	V _c :斜≀ ♪び割れ	めひび割れ発生 	Eせん断力, V _u (b) LAS-W	: せん断耐力 O 圧縮鉄筋位 ↓
$\frac{V_{s_exp}}{[kN]}$ 20.4 $V_{s_exp}: (£)$	V_{s_cal} V_{s_exp}/V_s [kN] V_{s_exp}/I_s 18.5 1.10 験値, V_{s_cal} :計算値			}					
5 645	, bear		図2	ひび害	れパタ-	ーン(ゼ	も断カレベル	$V/f'_{c}^{1/3} = 14$.4) ^{引張鉄筋位置}
7171	割れ問口亦位	Ū	(a) HA	S-WO			Û	(b) LAS-W	0

表3 収縮量測定結果および載荷試験結果

0.5 0.0 単位:mm

図3 ひび割れ開口変位分布(せん断カレベル V/f^{,1/3}=14.4)

表3に収縮量測定結果および載荷試験結果を示す.こ の表から,配合 LAS では収縮の低減が確認できる.こ こで、コンクリート強度のばらつきの影響を取り除く ために、圧縮強度の1/3乗で正規化したせん断力をせん 断力レベルと称する。各せん断力レベルの比較から、 収縮による曲げひび割れ発生せん断力、斜めひび割れ 発生せん断力,およびせん断耐力の低下が確認できる.

3.2 せん断補強筋分担せん断力

HAS-Wにおける終局時のせん断補強筋の分担せん断 力の実験値を、HAS-Wのせん断耐力からHAS-WOのせ ん断耐力を差し引くことで求めた. トラス理論により, せん断補強筋の分担せん断力の計算値は式(1)で求めら れる.

$$V_{s cal} = A_w f_{wv}(z/s) \tag{1}$$

ここで、Awはせん断補強筋の断面積、fwyはせん断補強 筋の降伏強度,zは応力中心間距離,sはせん断補強筋間 隔である.

実験値と計算値の比較結果を表4に示す.この結果か ら、せん断補強筋の分担せん断力は、トラス理論によ り概ね評価できることがわかる.

3.3 ひび割れ性状

図2および図3に、斜めひび割れ発生以前の同一せん断 カレベル (V/f^{*}c^{1/3}=14.4) におけるひび割れパターンおよ び画像解析より得られたひび割れ開口変位分布を示

す.図2から、収縮の影響により、ひび割れが圧縮縁側 に深く進展していることがわかる.また、収縮が大き い場合,引張鉄筋に沿った割裂ひび割れが生じた.割 裂ひび割れは鉄筋のダウエル作用を低下させる.

図3に示すように、収縮の影響により、ひび割れ開口 変位は著しく増大した. 収縮によるひび割れの拡幅は, 引張鉄筋に沿った割裂ひび割れを引き起こすととも に、骨材の噛合せ効果を減少させることから、せん断 耐力を低下させる要因であると考えられる.

- 4. 結論
- (1) 収縮の影響により、せん断補強筋のない高強度RC はりのせん断耐力は著しく低下する. その要因と して,深いひび割れの進展,ひび割れ開口変位の 増大,および引張鉄筋に沿った割裂ひび割れが挙 げられる.
- (2) せん断補強筋比0.21%の高強度RCはりにおけるせ ん断補強筋の分担せん断力は、トラス理論によっ て概ね評価できる.

参考文献

- 1) 河金甲ほか:高強度RCはりの斜めひび割れ発生強 度に及ぼす収縮の影響評価,土木学会論文集E, Vol.65, No.2, pp.178-197, 2009.4
- 東広憲ほか:破断した軸方向鉄筋を有するRCはり の破壊に対する画像解析, コンクリート工学年次 論文集, Vol.31, No.2, pp.727-732, 2009.7

-522-