形状の異なる機械式継手を用いた鉄筋コンクリート部材の力学的性状に関する研究

	隆臣	○後藤	L 正会員	東京鉄鋼株式会社
	宏史	睦好	フェロー会員	埼玉大学大学院
Phuong	en Dac	Nguye	学生会員	埼玉大学大学院

1. はじめに

鉄筋の継手には、ガス圧接継手、溶接継手、機械式 継手などがあり、最も普及している継手はガス圧接継 手である.その中で近年、継手部の不良率が小さいこ と、施工性の簡便さから機械式継手の使用比率が高ま ってきている.機械式継手では、ねじ節鉄筋継手が最 も採用されており、用途によって継手形状が異なるも のが開発されている.

本報告は、継手の長さおよび外径が異なる機械式継 手を危険断面に同列配置した場合の鉄筋コンクリート 部材について、耐力および変形性状に及ぼす影響を検 討するために実施した基礎実験の結果である.

2. 実験概要

(1) 試験体概要

本実験では、スパン 8~9m、内法高さ 7~8m, 壁厚 1m 規模のボックスカルバートを想定し、その 1/2.5 ス ケール試験体を計画した. 試験体断面は 400×400mm, せん断スパンは 700mm (a/d=2.0) である。試験体緒元 を表-1, 材料強度を表-2 にそれぞれ示す.

	No.	柱断面	柱主筋	継手	継手長さ (mm)	外径 (mm)
	1	100		ねじ節鉄筋継手Aナットなし	125	
	2	400	8-D22 (SD345)	ねじ節鉄筋継手Aナットあり	165	37.9
	3	400		ねじ節鉄筋継手B	200	
	4			モルタル充填式継手	300	53.5
士 0 井州政府						

表-1 試験体諸元

表-2 材料強度

			主筋(SD345)		帯筋(SD390)				
No.	Fc	$\sigma_{\rm sy}$	Ts	Es	٤ 0	σ_{wy}	Ts	Es	ε 0
		N/mm ²	N/mm ²	N/mm ²	μ	N/mm ²	N/mm ²	N/mm ²	μ
1	28.2			1.95				2.03	
2	25.3	270 1	5627	1.95 ×	2702	160.0	657.0	2.05	2400
3	25.3	576.4	505.7	105	2702	400.9	057.0	105	2490
4	28.7			10				10	
Fo: コンクリートの圧縮強度 o ・主節の防伏強度 ouv. 豊節の									

降伏強度, Ts; 引張強さ, E_s; ヤング係数, E₀; 降伏ひずみ

(2) 試験方法

試験体および設置概要図を図-1 に示す. 試験は, 図-1 に示す加力装置にて,正負に 1/200, 1/100 と 1 回ずつ載荷して行き,主筋が降伏した時点の変位を 1 δ_yとした.主筋降伏後は,1δ_yの整数倍の変位にて,

東京鉄鋼土木株式会社	正会員	佐々オ	、 文雄
埼玉大学大学院	学生会員	大野	拓也

正負に3回繰り返し載荷を実施した.

また,正負交番載荷に際して,主筋のひずみ分布を 把握するため,危険断面からスタブ側に300mm,柱側 に500mmの範囲でひずみ計測を同時に実施した.ひず みゲージは,100mm間隔を基本とし,継手部について は,継手の上下20mmの位置と継手中央部にそれぞれ 貼り付けた.ひずみゲージの貼付け位置の例を,図-1 に示す.

図-1 試験体および設置概要図

3. 試験結果

(1) 降伏荷重と最大耐力

各試験体の降伏荷重および最大耐力を表-3に示す. 全試験体とも計算値とほぼ一致していた.各試験体の 降伏変位($1 \delta_v$)は 8.0mm であった.

表-3 降伏荷重と最大耐力

	降伏荷重	降伏変位	最大耐力			
No.	库八何里 (kN)	δ_y (mm)	計算値 (kN)	実験値 (kN)	到達時の 水平変位	
1	246.7	8.0		263.8	4δ _y	
2	251.7		265 7	269.3	4δ _y	
3	247.8		205.7	271.7	4δ _y	
4	251.7			275.5	4δ _y	

(2) P-δ曲線(荷重-変位関係)

各試験体の P- δ 曲線を図-2,1 サイクル目の荷重 抱絡線を図-3 に示す. No.1 試験体は $6\delta_y$ で, No.2 お よび 3 試験体は $7\delta_y$ で, No.5 試験体は $6\delta_y$ でそれぞ

キーワード:機械式継手,同列配置,ボックスカルバート,変形性状,ひび割れ 東京鉄鋼株式会社 〒323-0819 栃木県小山市横倉新田 520 TEL:0285-28-1771 FAX:0285-28-1717 れ耐力低下した.耐力低下のタイミングが若干異なる ものの,総合的に見るといずれの試験体においても大 きな差異もなく,継手形状の違いによる変形性状の差 は確認できなかった.

図-2 P-δ曲線

図-3 抱絡線(1サイクル目)

(3) ひずみ分布

+1 δ yおよび+3 δ yの1サイクル目のピークひずみを 図-4 に示す.継手中央部には、ひずみが発生せずに 継手の近傍の鉄筋にひずみが集中して発生しているこ とが確認できる. No.4 試験体において継手上部の鉄筋 は、+4 δ 、で降伏した.

図-4 ひずみ分布

(4) ひび割れ

4δ_yの3サイクル終了後のひび割れ発生状況を図-5に示す。ひび割れは継手の種類に限らず,曲げひび 割れが初期に入り,水平変位が大きくなるに連れて斜 めにひび割れが進行した.その後,曲げ降伏破壊を起 こし,かぶりの剥落,コアコンクリートの流出を経て 耐力の低下を確認した.No.4のモルタル充填式継手に は,他の試験体と比較して顕著な斜めひび割れがなく, 継手部の区間内に微細なひび割れが多数発生している が,これは継手によってコアコンクリートの損傷が軽 減されているためと考えられる.

図-5 ひび割れ発生状況(4 δ_v後)

4. まとめ

今回の実験での結果および考察を以下にまとめる.

- 最大耐力は、全試験体とも計算値に対してほぼ一 致しており、継手形状の影響は見られなかった。
- ② 変形性状やひび割れ発生状況は、継手形状(長さや外径)の違いによる大きな差は認められなかった。
- ③ 主筋は継手近傍で降伏し、ひずみが大きくなって おり、危険断面から離れると徐々に小さくなって いることから、危険断面に継手が同列配置される ことによる悪影響はないと考えられる。

以上より,現場状況に応じて継手を選択することは 可能と考えられる.

<参考文献>

- 1) 土木学会:コンクリートライブラリー128 鉄筋定着・継手指針【2007 年度版】
- 2) 社団法人日本道路協会:道路橋示方書・同解説 Ⅲ コンクリート橋編(平成 14 年度版)
- 社団法人日本道路協会:道路橋示方書・同解説 V 耐震設計編(平成14年度版)