# 火害を受けたコンクリートの劣化範囲の推定に関する一考察

| È      | 首都高速道路(㈱ | 正会員 | 永井  | 政伸 |
|--------|----------|-----|-----|----|
| 大林・    | 奥村・西武 JV | 正会員 | 高浜  | 達矢 |
| (株)大林組 | 生産技術本部   | 正会員 | 〇久末 | 賢一 |
| (株)大林組 | 技術研究所    | 正会員 | 川西  | 貴士 |

## 1. はじめに

火災により火害を受けたコンクリートの補修や補強 を行う場合,加熱によりコンクリートが劣化した範囲 を事前に調査する必要がある.

既往の診断法として、変色状況の目視調査、中性化 深さ測定、シュミットハンマーによる反発度の測定や 各種力学試験および材料分析による方法など多数の手 法が提案されている<sup>1)</sup>.

本稿では、火害を受けたコンクリートの劣化範囲を 推定するための簡易な方法として、小型の反発硬度測 定器を用いた方法、直接的に圧縮強度分布を測定する 方法および中性化深さの測定による方法について、実 験的に検証した結果を報告する.

#### 2. 実験概要

劣化範囲の推定は、RABT 曲線(1200℃-60分)に より加熱履歴を与えた試験体(以下,試験体と呼称) からコアを採取し実施した.試験体は厚さ500mm と し,幅900mm×高さ1300mmの範囲を加熱した.試験 体に用いたコンクリートには,高炉セメントB種を使 用し,水セメント比は35%とした.加熱時には,コン クリート内部の温度履歴を測定し,図-1に示す深さ 方向の最高温度分布を得た.なお,試験体は,ポリプ ロピレン短繊維の混入により,爆裂しなかった.

(1) 小型の反発硬度測定器を用いた方法

試験体より φ 100mm のコアを採取し, 断面を半分に 切断し, 表面の反発硬度分布を小型の測定器を用いて 測定した(写真−1).加熱面から 200mm までは 1cm 間隔で, 200mm 以深は 2cm 間隔で測定した.試験は, JSCE-G 504 に準拠して行った.打撃点数は 20 点とし, それぞれの偏差が平均値の±20%以上となる値があれ ば, その測定値を捨て, これに代わる測定値を補った.

(2)直接的に圧縮強度分布を測定する方法
試験体より φ 68mm のコアを採取し,加熱面から 10,

30, 50, 70, 100, 150, 200 および 300mm の位置から 長さ 130mm に切り出して圧縮強度試験を行った(図 -2, 写真-1). 試験は, JIS A 1107 に準拠して行った.

(3) 中性化深さの測定による方法

試験体より φ100mm のコアを乾式で採取した後, 断 面を半分に切断し, その切断面にフェノールフタレイ ン溶液を噴霧し, 赤紫色を呈していない部分を測定し た. 試験は, JIS A 1152 に準拠して実施した.



写真-1 反発硬度の測定および圧縮強度試験の状況

キーワード 火害, コア, 調査・診断, 反発硬度, 圧縮強度, 中性化 連絡先 〒204-8558 東京都清瀬市下清戸4-640 (株) 大林組 技術研究所 生産技術研究部 TEL042-495-1012

# 3. 実験結果

反発硬度および圧縮強度の測定結果を表-1 に示す. 加熱面近傍の測定値に多少のばらつきが認められるが、 平均すると加熱面からの深さが小さくなるほど、測定 値が減少する傾向が認められた.

加熱によるコンクリートの残存圧縮強度分布を図ー 1に示す温度分布と図-3<sup>2)</sup>により推定した(以下,推 定値と呼称).反発硬度と圧縮強度の測定結果から、そ れぞれの測定値を加熱による影響が小さい 150mm 以 深の測定値の平均値で除して無次元化した値と, 推定 値との比較を図-4 に示す. 反発硬度と圧縮強度の分 布は,ほぼ一致した. 圧縮強度が大幅に低下すると想 定される 50mm より浅い部分においては、測定値が低 下する勾配が推定値の勾配より大きい結果となった.

中性化深さの測定結果を写真-2 に示す. 中性化深 さは22mm であった.水酸化カルシウムが熱分解する 温度が 500~580℃とすると<sup>1)</sup>,加熱試験から得られた 最高温度分布 (図-1) から 500~580℃に達する深さ は21~30mmであり、中性化深さと一致した.

### 4. まとめ

RABT 曲線による加熱履歴を与えた試験体からコア を採取し、反発硬度、圧縮強度および中性化深さを測 定した結果,以下の知見が得られた.

(1) 反発硬度と圧縮強度において、各測定値を健全 部に対する割合で整理すると、両者の測定値は概ね-致した.

(2) 圧縮強度が大幅に低下する深さ 50mm より浅い 部分については,反発硬度および圧縮強度の両者とも, 測定値の低下する勾配が推定値より小さくなった.

(3) 中性化深さと最高温度分布より水酸化カルシウ ムが熱分解されたと推定される深さは一致した.

本実験で得られた結果から、提案した手法の有用性 を確認した. 今後, 火災により火害を受けたコンクリ ートの劣化した範囲を推定する方法の一つとして,活 用できれば幸いである.

#### 参考文献

1) 土木学会: コンクリート構造物の耐火技術研究小委 員会報告ならびにシンポジウム論文集、コンクリート 技術シリーズ 63、2004.10

2)首都高速道路株式会社:トンネル構造物設計要領「シ ールドトンネル耐火設計編], pp.11-12, 2007.7

### 表-1 反発硬度および圧縮強度の測定結果

| 加熱面か<br>らの深さ<br>(mm) | 反発硬度 <sup>※1</sup> |            |            |     | 圧縮強度(N/mm <sup>2</sup> ) |      |      |      |
|----------------------|--------------------|------------|------------|-----|--------------------------|------|------|------|
|                      | 1                  | 2          | 3          | 平均  | 1                        | 2    | 3    | 平均   |
| 10                   | 586 (51.3)         | 466 (36.3) | 461 (30.8) | 504 | 37.4                     | 44.5 | 33.9 | 38.6 |
| 30                   | 709 (60.7)         | 579 (72.4) | 608 (80.6) | 632 | 58.3                     | 49.7 | 50.2 | 52.7 |
| 50                   | 785 (43.0)         | 733 (56.9) | 717 (39.4) | 745 | 67.6                     | 54.1 | 51.2 | 57.6 |
| 70                   | 793 (46.4)         | 776 (47.9) | 755 (66.9) | 775 | 64.1                     | 65.6 | 60.2 | 63.3 |
| 100                  | 801 (44.1)         | 782 (37.4) | 780 (52.8) | 788 | 72.5                     | 67.0 | 63.9 | 67.8 |
| 150                  | 831 (26.7)         | 833 (30.4) | 819 (41.3) | 828 | 68.7                     | 69.3 | 76.1 | 71.4 |
| 200                  | 833 (52.1)         | 831 (28.7) | 821 (36.2) | 828 | 76.5                     | 68.8 | 68.3 | 71.2 |
| 300                  | 832 (36.9)         | 839 (31.2) | 813 (38.6) | 828 | 77.1                     | 66.3 | 72.0 | 71.8 |



()内は、打撃点数20点の標準偏差を示す

反発硬度のデータは、部分的に抜粋して表示。



コンクリートの残存圧縮強度分布<sup>2)</sup> 図-3



図-4 反発硬度および圧縮強度の推定値との比較



写真-2 中性化深さの測定状況