第V部門

1. はじめに

2. 実験概要

近年, 複合劣化の事例が報告されているものの,

部材の曲げ耐荷特性に及ぼす影響について検討した.

本研究では、図-1 に示すような単鉄筋長方形断面

を有する全長1800mmのRCはり部材を対象として、

スターラップ配置間隔 140mm,劣化の種類を ASR,

鋼材腐食,ASR+鋼材腐食の複合劣化,健全の計4種

類を選定した.また、各供試体の主鉄筋には両端 180°フックを有する供試体、フックを有しない供試 体を1体ずつ作製し、これらの要因を組み合わせた 供試体を計16体作製した.これらの供試体の詳細を

表-1 に示す. なお,供試体の主鉄筋には 2-D16 (f_{sv}=342N/mm²) を用い, 片側の主鉄筋にはゲージ破 損を防ぐため幅×高さ=2×4mmの溝を掘り、鉄筋内部

にゲージを埋め込んだ. せん断補強筋には D6

(f_{sv}=435N/mm²)を用いた. なお, 作製した供試体に は打設後28日間散水養生後,ASR供試体(以下A供

試体)とASR+鋼材腐食の複合劣化供試体(以下AC供 試体)は養生室にて促進養生を実施し、鋼材腐食供試 体(以下C供試体)とAC供試体は濃度3%の塩水を散 布した.また,載荷試験方法は,せん断スパン 600mm,

曲げスパン 300mm とした対象 2 点集中荷重方式 (a/d=3.53)とし、破壊に至るまで単調漸増型載荷を実 施した.また、コンクリートと鉄筋との付着特性を 検討するために土木学会規準(JSCE-G503)による付

着供試体(小)とはり断面と同一の諸元とした付着供

試体(大)による試験を行った.

複合劣化による研究は未だ少ないのが現状である.

本研究では ASR と塩害による複合劣化が RC はり

ASR と鋼材腐食による複合劣化が生じた RC はり部材の曲げ耐荷特性

大阪工業大学大学院	学生員	〇田中	秀明
大阪工業大学大学院	学生員	福谷	祥
大成建設(株)		神木	智大
大阪工業大学工学部	正会員	三方	康弘
大阪工業大学工学部	正会員	井上	晋

3. 経過観測の計測結果

養生年数1年と2年におけるC, AC供試体のひび 割れ進展状況を図-2 に示す. C 供試体は鋼材腐食に よるひび割れ, AC 供試体には ASR および鋼材腐食 による双方のひび割れが発生していた.

4. 腐食評価

腐食鉄筋の平均質量減少率は、C供試体では1.68%、 AC供試体では3.79%であった.

± 1

衣-1 氏武神の計和					
名称		劣化の種類	フック	養生年数	
N	N-0	健全	無	0	
	N-F-0	健全	有	0	
А	A-0	ASR	無	0	
	A-F-0	ASR	有	0	
	A-1	ASR	無	1	
	A-F-1	ASR	有	1	
С	C-0	塩害	無	0	
	C-F-0	塩害	有	0	
	C-1	塩害	無	1	
	C-F-1	塩害	有	1	
AC	AC-0	ASR+塩害	無	0	
	AC-F-0	ASR+塩害	有	0	
	AC-1	ASR+塩害	無	1	
	AC-F-1	ASR+塩害	有	1	
	AC-2	ASR+塩害	無	2	
	AC-F-2	ASR+塩害	有	2	

出きはの発生

キーワード: ASR, 塩害, 複合劣化, 鋼材腐食, ケミカルプレストレス 連絡先:〒535-8585 大阪府大阪市旭区大宮 5-16-1 TEL 06-6954-4109

-279-

<u>5. 付着強度</u>

付着供試体(小),(大)の最大付着応力度と破壊形式 を表-2 に示す.付着供試体(小)において,鋼材腐食の 影響により C-1, AC-2 供試体は N-0 供試体と比較し て最大付着応力度が低下した.一方,付着供試体(大) においては,C-1, AC-2 供試体は N-0 供試体と比較 して最大付着応力度が増加した.これは ASR による ケミカルプレストレスや腐食生成物が付着特性に影 響を及ぼしたものと考えられる.

6. 最大耐力と破壊形式

各供試体の最大荷重,曲げ破壊荷重の計算値を表 -3 に示す.なお,曲げ破壊荷重の計算値は,載荷試 験終了後の供試体から腐食鉄筋を取り出し,引張試 験を実施し,鉄筋の降伏強度(公称断面積により算出) からファイバー法により算出した.

各供試体とも実測値が計算値を上回り安全側の数 値となった.破壊形式は全て曲げ引張破壊に至った. また,終局時のひび割れ状況を写真-1に示す.C供 試体はN供試体と比較し,鋼材腐食の影響により付 着力が低下したため,ひび割れ分散性が低下した. AC供試体はN供試体と比較し,C供試体と同様にひ び割れ分散性の低下が見られた.さらに,ASR 膨張 によるケミカルプレストレスにより Vc が向上した ため,せん断ひび割れが生じなかったと考えられる.

7. 荷重-中央変位関係

フックを有しない供試体の荷重-中央変位関係を 図-3 に示す.初期剛性はほぼ同様であったが、C-1, AC-2 供試体はN供試体と比較し,最大荷重以降の同 一荷重における変位量が大きくなる挙動を示した. これは,鋼材腐食により主鉄筋の断面積が減少し定 着力が低下したことが要因と考えられる.

<u>8. まとめ</u>

鋼材腐食が生じている供試体ではひび割れ分散性 が低下し,最大荷重以降の同一荷重時における変位 量が大きくなる挙動を示した.また,AC供試体では ケミカルプレストレスがコンクリートと鉄筋の付着 特性に大きな影響を及ぼすことが確認された.

<u>謝辞</u>

本研究は科学研究費補助金(基盤研究(A),課題番号: 21246072)により実施した.ここに謝意を表します.

表-2 付着強度

	付着供試体(小)		付着供試体(大)		
名称	最大付着応力度	破撞形式	最大付着応力度	破壊形式	
	(N/mm^2)	W版形式	(N/mm^2)		
	8.7		4.1	抜出し	
N-0	11.1		6.1		
	10.7	割裂	4.1		
	10.7		6.3		
	7.9		5.3		
C-1	10.2		6.1	抜出し	
	9.6		6.7		
	8.2	割裂	7.9		
	8.1		7.3		
	7.8		6.0		
AC-2	2.7		8.5	・ 抜出し - -	
	1.7		7.4		
	2.0	抜出し	計測失敗		
	3.6		-		
	2.8		_	_	

表-3 供試体の載荷試験結果

名称	最大荷重 Pu	曲げ破壊 荷重 計算値	せん断耐力計算値 (kN)		
	(kN)	Pub (kN)	Vy	Vs	Vc
N-0	73.25	64.76	50.24	29.13	21.11
N-F-0	69.82	64.76	50.24	29.13	21.11
C-1	71.78	65.74	50.37	29.13	21.24
C-F-1	75.21	63.84	50.37	29.13	21.24
AC-2	69.82	63.70	50.30	29.13	21.17
AC-F-2	68.35	60.79	50.30	29.13	21.17

写真-1 終局時のひび割れ状況

