水平荷重、モーメント荷重を受けるパイルドラフト基礎の遠心模型実験

東京工業大学大学院	正会員	○澤田	幸平
東京工業大学大学院	正会員	竹村	次朗

1. はじめに

パイルドラフト(PR)基礎は、ラフト底面に少数の摩擦杭を併用した基礎として基礎設計の1つに位置付けられている¹⁾。ラフト部の支持性能を活かしつつ、杭により不等沈下の低減が期待できるため、経済的な基礎形式として知られている²⁾が、PR基礎が水平、モーメント荷重を受けた場合、ラフト部の鉛直荷重分担率(RLP)が変化するなど、その挙動が複雑になるため未解明な点が残されている。本研究ではモーメント力を受けた際のPR基礎の挙動を解明するために遠心載荷装置を用い、PR基礎とその構成要素である直接基礎、杭基礎の水平載荷実験を行った。

2. 実験概要

本研究では図1で示す実験システムで水平載荷実験を行った。基 礎模型は、図2に示すように、80mm×80mm×20mmのステンレス 製のラフト部を持ち、ラフトの上部には上部構造物としてステンレ ス製のブロックが剛結されている。PR 基礎、杭基礎はラフト部に 外径10mm、肉厚0.5mmのステンレス製模型杭が杭間隔50mmで4 本配置されている。またラフト部の底面には、サンドペーパーが貼 付けてあり粗の状態としてある。模型の設置方法は、まず豊浦砂を 用い目標相対密度50%で空中落下法により地盤を作製し、1g 場の 自重により杭を貫入させた。その後50g 場で載荷装置を用い、上部 構造物に鉛直荷重を与えることで、ラフト底面を地盤に接地させた。 ただし杭基礎はラフト底面と地盤との間に5mmのギャップを与え た。水平載荷実験は、50gの遠心加速度場で2方向ジャッキを用い て行い、図1で示す下側のLDTで計測した水平変位δLDTが所定(表

宝殿ケーフ

1)の値になるまで交番載荷を行った。ラフト底面からの水平載荷点高さ(h)は h=50mm、90mm の高さに与えるこ ととし、水平載荷実験を行う前には各基礎にはプレロードとして鉛直荷重を与え、その結果水平載荷前の RLP は 27%であった。載荷中は図1で示した計測機器により鉛直荷重、水平荷重(PL)、鉛直変位、ラフト底面水平変位(δ)、 回転(θ)、杭に働く応力を計測した。また、基礎に働くモーメント力(ML)は PL×h によりもとめることとした。

3. 結果					
図3に水平載荷中の8-基礎の沈下関係を示す。PR基礎は水平	Case	実験の詳細	h=50mm での水平 変位, δ _{LDT}	相対 密度	
Unit(mm)		直接基礎 (RLP=100%)	鉛直載荷	52.4%	
80	R5	直接基礎 (RLP=100%)	±50mm(h/s=1,1.8) +250mm(h/s=1)	52.4%	
	R6	直接基礎 (RLP=100%)	±50mm(h/s=1,1.8) +200mm(h/s=1.8)	51.1%	
	P2	杭基礎 (RLP=0%)	±50mm ±100mm(h/s=1,1.8)	53.0%	
80	PR3	パイルドラフト (RLP=0%)	鉛直載荷	50.9%	
	$\mathbf{PR4}$	パイルドラフト (RLP=27%)	±50mm (h/s=1,1.8) ±100mm(h/s=1,1.8)	52.8%	
(1) 2 模型概要 直接基礎 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	PR5	パイルドラフト (RLP22%)	±50mm (h/s=1,1.8) ±100mm(h/s=1,1.8)	49.4%	

パイルドラフト基礎、杭基礎、直接基礎、水平載荷試験、遠心模型実験

東京都目黒区大岡山 2-12-1 Tel: 03-5731-2592 Fax: 03-5734-3578

載荷による沈下を抑えられることが分かる。ま た杭基礎の最終的な沈下は約3mmであり、ラ フト底面が最後まで地盤に接触していないこ とが確認できる。図4にδ-右杭の沈下関係を 示す。水平荷重はまず左側から与えられ、その 後右側から与えられるため右杭は最初に押込 まれ、その後引抜かれることになる。PR 基礎 について見てみると、押込み側ではラフト底面 が地盤に押しており、引抜き側ではラフト底面 が浮き上がる挙動を示していることが確認で きる。このことから、押込み側の杭周辺の地盤 の拘束圧は PR 基礎の方が杭基礎よりも大きく、 引抜き側では PR 基礎と杭基礎では大きな違い が無いと考えられる。図 5 に h=90mm、δ_{LDT}= ±2mm におけるθ - M_L 関係を示す。直接基礎 と杭基礎を比較すると、直接基礎はモーメント 抵抗の増加が小さくなる折れ曲がり(降伏点) が見られるのに対し、杭基礎は明確な降伏点は 見られない。このため回転角が大きくなると杭 基礎のモーメント抵抗が直接基礎よりも大き くなることが分かる。また PR 基礎は回転角に よらず、直接基礎、杭基礎よりも大きなモーメ

ント抵抗を示している。図6はPR 基礎のモーメント抵抗をラフト部と杭部に分けて示したものである。杭基礎の モーメント抵抗も合わせて示してある。PR 基礎のラフト部のモーメント抵抗は、RLP が27%と大きくないため、 全体のモーメント抵抗の15%程と小さくなっていることが分かる。PR 基礎の杭部と杭基礎のモーメント抵抗を比 較すると大きな違いが見られないことが確認できる。図7(a)にh=90mm、δ_{LDT}=±2mmにおけるPR 基礎、杭基礎の 回転角 - 右杭の杭頭軸力、図7(b)に回転角 - 先端支持力・周面摩擦力の関係をそれぞれ示す。引抜き側では先端支 持力、周面摩擦力ともにPR 基礎と杭基礎で違いが見られない。これは図4で示したように引抜き側の杭周辺の地 盤条件がPR 基礎と杭基礎で違いがないためである。しかし、押込み側では先端支持力は杭基礎の方が大きく、周 面摩擦力はPR 基礎の方が大きくなっている。これは図3で示したようにPR 基礎の沈下が抑えられていることに加 え、鉛直荷重の一部をラフト部が受け持っているため、杭基礎の先端支持力が大きくなったと考えられる。またPR 基礎の押込み側の杭周辺地盤の拘束圧が大きいため、周面摩擦力はPR 基礎の方が大きくなったと言える。以上の 結果として図7(a)のようにPR 基礎と杭基礎の杭頭軸力は大きな違いが見られず、本研究の条件ではPR 基礎と杭基 礎のモーメント抵抗の違いは、ラフト部からのモーメント抵抗によるものであることが確認できた。

4. まとめ

PR 基礎の水平載荷実験より以下の結論が得られた。PR 基礎と杭基礎では引抜き側の軸力の変化に違いは見られ ないが、押込み側では先端支持力は杭基礎の方が、周面摩擦力は PR 基礎の方が大きくなった。これはラフト底面 の接地圧の影響であると考えられる。その結果、PR 基礎と杭基礎の杭頭軸力の変化は大きな違いが無く、本研究の 条件下ではPR 基礎と杭基礎のモーメント抵抗の違いはラフト部のモーメント抵抗に依るものであると確認できた。 参考文献

1) 建築構造設計指針(2001年改訂)、日本建築学会

2) Burland, J. B., Broms, B. B. and De Mello, V. F. B. 1977; behavior of foundations and structures, Proc. Of 9 ICSMFE, Tokyo, 496-546