粘土の硬化挙動におよぼすせん断ひずみの影響

- 北海道大学工学研究院 正会員 〇福田 文彦
 - 北海道大学工学院 中畑 逸郎
- 北海道大学会計専門職大学院 星川 尚久

1. 発表の概要

筆者らは再構成粘土の硬化則を調べるために過去に行った研究の実験データ¹⁾²⁾³⁾の吟味を改めて行った。 その結果,(1)粘土の硬化則が等方硬化則であり,(2)硬化パラメーターは塑性体積ひずみ/間隙比の塑性成分 のみならず塑性せん断ひずみの関数でもあり,(3)せん断中と等方圧縮中の硬化パラメーターが異なることの 三つの可能性が出てきた。今回の発表ではこれらについて報告する。

等方過圧密履歴を受けた粘土の平均有効応カー 定排水圧縮せん断中の硬化挙動を調べるための 実験(Pre-Compression 試験)の概略と実験結果

(1)実験の概略 PC 試験の概略を表 1 と図 1 にまと めた。実験試料は NSF-Clay (ρ_s =2.76 g/cm³, m_i =54%, I_p =26)であり,実験には応力制御型の三軸試験器を 使用した。表 1 の NC 試験は等方正規圧密粘土の平均 有効応力(p')一定排水圧縮せん断試験,0C-1.25~ 0C-2.00 は等方過圧密粘土のp'一定圧縮排水せん断 試験である。図 1 は各試験のあらかじめ定めた有効

応力経路である。NC 試験は図 1・経路 AB の等方圧密過程と 経路 BC の p' 一定排水せん断過程からなり, 0C 試験は図 1・ 経路 DE の等方圧密過程,経路 EFG の初期等方圧縮と除荷, 経路 GH の p' 一定排水せん断過程からなる。この実験の詳細 については文献¹⁾を参照されたい。

この実験の試料の硬化が等方硬化則にしたがっていると すれば 0C 試験の硬化パラメーター(κ)の挙動は図 2(b)のと おりとなる。すなわち 0C 試験のせん断応力($q=\sigma_1'-\sigma_3'$)~ κ 曲線が NC 試験の同曲線と交わる点が降伏点(点 Y₂')であり, 降伏点以降の 0C 試験の $q \sim \kappa$ 曲線と NC 試験の曲線が完全に一致する。

(2)実験結果 本研究では等方過圧密履歴を受けた粘土の p'一定排水圧縮せん断における硬化パラメーターの探索を行うために,無ひずみ点を等方圧密過程の終了点にとり,NC試験と 0C試験のせん断過程における様々なひずみパラメーターの挙動と、図 2(b)の硬化パラメーターの挙動の比較を行った。その結果、体積ひずみ(ϵ_p)とせん断ひずみ($\epsilon_q = 2(\epsilon_1 \cdot \epsilon_3)/3$)の和の挙動が、図 2(b)の硬化パラメーターの挙動とほぼ一致することを見いだした。NC試験と 0C試験のせん断過程における $\epsilon_p + \epsilon_q$ の挙動を図 3 に示す。なお 0C試験の初期ひずみは等方圧縮・除荷過程(図 1・経路 EFG)で生じたものである。また筆者らは $\epsilon_p + \epsilon_q$ ではなく、 $\epsilon_1 + \epsilon_2$ を硬化パラメーターとする等方硬化則も提案しているが 1¹²、三軸圧縮条件($\epsilon_2 = \epsilon_3$)のもとでは $\epsilon_p + \epsilon_q$ と $\epsilon_1 + \epsilon_2$ の挙動の違いは小さい。

キーワード	硬化則,硬	頁化パラメーター	-, せん断,	等方圧縮,対	粘土	
連絡先	〒060-8628	札幌市北区北13	3条西8丁目	北海道大学 工	学研究院	TEL011-706-6194

表1 PC 試験の実験条件

Test No.	Isotropic consolida- tion stage	Isotropic p and unload	oreloading ling stages	Shear stage	
	Consolida- tion pressure (kPa)	Maximum preloading stress, p' (kPa)	O.C.R.	p' (kPa)	Shear mode
NC			1.00	300	Com- pression
OC-1.25		375	1.25		
OC-1.50	300	450	1.50		
OC-1.75		525	1.75		
OC-2.00		600	2.00		

図1 OC 試験の有効応力経路

図2 等方硬化則と硬化パラメーターの挙動

^{ε_p+ε_q (%) 図 3 0C 試験のせん断過程における ε_p+ε_q の挙動}

主の

3. 初期せん断履歴を受けた粘土の等方圧縮時における硬化挙動を調べるための実験(Pre-Shear 試験)の概略と実験結果

(1)実験の概略 PS 試験の概略を表 2 と図 4 にまとめる。この実験に用いた粘 土試料も NSF-Clay である。表 2 の PS-NO 試験は等方正規圧密粘土の等方圧縮 試験であり, PS-50~PS-200 は初期せん断履歴を受けた粘土の等方圧縮試験で ある。各試験のあらかじめ定めた有効応力経路を図 4 に示す。PS-NO 試験は図 4・経路 AB の等方圧密過程と経路 BC の等方圧縮過程の二つの載荷過程からなり, PS-50~PS-200 試験は経路 DE の等方圧密過程,経路 EFG の初期せん断(p'一定 排水圧縮せん断)と除荷過程,経路 GH の等方圧縮過程の三つの過程からなる。 この実験の詳細については文献³⁾を参照されたい。

(2)実験結果 PC試験と同じ方法論によってせん断履歴を受けた粘土の等方圧縮中における硬化パラメーターの探索を行った。すなわち無ひずみ点を等方圧密過程の終了点にとり、等方圧縮過程における p'とさまざまなひずみパラメーターのグラフを描き,図 2(b)の硬化パラメーターと同様な挙動を示すひずみパラメーターの探索を行った。その結果,先に述べたようにPC試験ではひずみパラメーター $\epsilon_p+\epsilon_q$ が硬化パラメーターの有力な候補であったのに対し,PS 試験ではひずみパラメーターの有力な候補であったのに対し,PS 試験ではひずみパラメーターの方力な候補であることが明らかとなった。PS 試験のせん断過程における $p' \sim \epsilon_p - \epsilon_q/2$ 関係を図5に示す。

4. まとめ

(1)少なくともp'一定排水圧縮せん断条件や等方圧縮条件な どの限定された応力条件の下では、粘土の硬化挙動を等方硬 化則によって表すことが可能性である。

(2)粘土の硬化には体積ひずみ/間隙比のみならず, せん断ひ

ずみも大きな役割を果たす。また硬化パラメーターが載荷条件によって変化している可能性がある。

参考文献 1) 中畑・福田,平均有効応力一定条件下における粘土の硬化則,第46回地盤工学研究発表会講演集,地盤工学会,2011,pp295-296 2) 福田・中畑,平均有効応力一定条件下における粘土の降伏規準,第46回地盤工学研究発表会講演集,地盤工学会,2011,pp293-294 3) 土田・福田・三田地,せん断履歴を受けた粘土の等方圧縮挙動,第60回土木学会年次学術講演会講演概要集Ⅲ,土木学会,2005,pp883-884

Test No.	Isotropic consolida- tion stage	Pre- shearing and unloading stages					
Test No.	Con- solidation pressure (kPa)	Maximum pre- shearging stress, q (kPa)					
PS-NO							
PS-50	200	50					
PS-100	500	100					
PS-200		200					

NC

~

OC-1.25 OC-1.50

OC-175

OC-2.00

20

PS 試験の実験条件

図 4 PS 試験の有効応力経路

