杭・壁併用型地盤改良工法(コラムリンク工法)の試験盛土を 対象とした二次元 FEM による再現解析

大成建設	正会員	○松井	秀岳	大成建設	正会員	石井	裕泰
土木研究所	正会員	堤	祥一	清水建設	正会員	川崎	廣貴
竹中土木	正会員	津國	正一	不動テトラ	正会員	新川	直利

1. はじめに

近年,盛土荷重を受ける軟弱粘性土地盤の沈下・変形対策として,深層混合処理工法が盛んに用いられ,改良土 量を低減した種々の形式が提案されている^{例えば1)}.一方,都市部近傍等で盛土周辺に家屋などが隣接する場合は,盛 土荷重による周辺地盤の変形に制限が設けられる場合もある.こうした課題にも配慮した工法として,筆者らは新 たに杭・壁併用型地盤改良工法(以下,コラムリンク工法)を提案し,遠心実験や解析による検討を行ってきた.

本報では、コラムリンク工法の試験盛土を対象とした二次元 FEM による再現解析を実施し、地盤および改良体 挙動の評価手法としての適用性を検証する.

2. 試験盛土の概要²⁾

対象地盤の構成と改良仕様を図 1に示す.事前検討では、二次元・ 三次元 FEM 解析により改良仕様と変位抑制効果の関係を検証し、盛 土法尻から 10m 地点の鉛直・水平変位 2cm 以内という変位制限値を 満たすのに必要最小限の改良体積を選定した.施工では、盛立開始前 に沈下板・変位杭・ひずみゲージ・地中変位計等を各所に設置し、盛 立開始からその後の放置期間にかけて動態観測を実施した.

3. 解析条件

表 1に物性値の一覧を,図 2に解析メッシュを示す.解析には,汎 用解析コード Plaxis 2D Ver9.02 を用いた.対称性を考慮して盛土の半 断面をモデル化し,盛土中心から側方境界までを 100m とした.変位 の境界条件は底面を固定,側面を鉛直ローラーとし,地表面および下 端は排水境界とした.砂層・改良体は線形弾性体,粘土層は関ロ・太 田モデル³⁾(二次圧密係数を 0 としたため弾塑性体),盛土は Mohr-Coulomb モデルを用い,現地調査をもとに物性を設定した.盛 土の載荷過程は要素の積み上げでモデル化した.改良体部分は,実際 には三次元的な配置を二次元断面にモデル化するにあたり,改良体が

図 1 適用地盤の構成と改良仕様

液 1 所作に用いた物性値一見											
	単位体積	粘着力	内部	変形	間隙	圧密降伏	圧縮	膨張	限界状態	キ。マルノトレ	透水
	重量 γ_t	с'	摩擦角 ϕ'	係数 E	比	応力 <i>p</i> c	指数	指数	応力比	小) / / LL	係数 k
	(kN/m^3)	(kN/m^2)	(deg.)	(kN/m^2)	e ₀	(kN/m^2)	λ	κ	М	ν	(cm/sec)
盛土	19.0	10.0	35.0	28,000		I			١	0.25	1.00×10^{-3}
Ac1-2	14.6	10.0	36.4	1,720	2.13	36.8	0.289	0.029	1.48	0.35	1.30×10^{-6}
As2	18.7		-	28,000	-	Ι			١	0.25	1.00×10^{-3}
Ac2-2	14.3	10.0	36.2	6,380	2.53	146.1	0.665	0.067	1.47	0.35	3.00×10^{-7}
Ac2-3	15.1	10.0	33.0	7,130	2.00	178.5	0.408	0.041	1.33	0.35	2.30×10^{-7}
Dvc	15.8	10.0	33.0	6,510	1.21	215.7	0.149	0.015	1.33	0.35	1.40×10^{-9}
Dvs	19.0		-	70,000		I			١	0.35	1.00×10^{-3}
改良体	19.0		-	*	-	Ι		1	١	0.20	各層と同値
※施工した改良体の品質確認結果(粘土層 367~576MPa,砂層 718MPa)に奥行方向の改良率を乗じて設定.											

بالاعتبار على المحالي

キーワード 地盤改良,FEM,有効応力解析,深層混合処理工法,試験施工,再現解析

連絡先 〒245-0051 神奈川県横浜市戸塚区名瀬町 344-1 大成建設技術センター TEL 045-814-7217

位置する要素で,深度毎に奥行方向の改良率で低減した変形係数 を用いるとともに,透水係数は周辺地盤と同値とした.

4. 解析結果

図 3には地表面沈下に関する実測値との比較を示す.(a)の盛土 中央部沈下量の経時変化の比較では,実測値は杭間で計測した値 を,解析結果は盛土中央部の杭要素上端の値を示している.解析 結果は盛立中の傾向を捉えているが,盛立後の圧密挙動は再現で きていない.解析上,地盤と側部壁の相互作用を十分モデル化で きず,縁切り効果を再現できなかったため,盛土中央部の圧密沈 下を過小評価したものと思われる.(b)には地表面沈下量分布の比 較を示す.ここで,動態観測では盛立作業用の仮設盛土の影響と 見られる沈下が観測されたため,盛立完了に合わせた仮設盛土撤 去後の約1年について,沈下量増分を比較している.盛土直下で は前述の差異が見られるが,盛土周辺の沈下量分布については, 解析結果が動態観測結果の傾向を概ね捉えたものとなっている.

図 4には解析断面上の側部壁設置位置(盛土中心から 8.24m) において、変位、ひずみの深度方向分布を比較した.(a)の水平変 位については、図1に明示した通り、動態観測では奥行方向で側 部壁に挟まれた無改良地盤中で計測している.解析結果は、軟弱 粘土層の境界部分で分布の変曲点が生じる点で実測の傾向を捉 えているが、全体的な変位量、分布形状には差異がみられる.(b) の鉛直ひずみについては、側部壁中に挿入・設置したひずみゲー ジの測定値と比較している.ここで、解析結果の深度分布で極端 な変化が生じている深度約 21m は、奥行き方向の同列上に配置 された内部杭の下端に位置する.前述のように、奥行方向の改良 率で改良体物性値を補正した今回の手法では、深度 21m を境に 異なる変形係数を側部壁部に設定することとなり、ひずみ分布に 顕著な違いを生じさせる要因になったものと考えられる.

5. まとめ

コラムリンク工法を適用した試験盛土を対象に二次元 FEM に よる再現解析を行った結果,周辺地盤の変形挙動はある程度再現 できる一方で,盛土中央部の圧密沈下傾向や側部壁の応力・ひず みについてはモデルの設定手法に起因すると思われる相違が認 められた.コラムリンク工法の予測・評価手法の観点で,適用限 界やモデル化手法について,引き続き検討にあたりたい.

謝辞:本報は、土木研究所と民間 13 社で実施した「側方流動対策とし

ての地盤改良技術に関する共同研究」の成果の一部であり、御協力いただきました関係各位に深く感謝いたします.

参考文献: 1) Miki, H. Okochi, Y. and Makino, M.: Evaluation of constraint effect of DMM with varied shape and arrangement of stabilized bodies using centrifuge model test, *Proceedings of Indian Geotechnical Conference*, pp.501-504, 2011.

2) 川崎ら:熊本宇土道路に用いたコラムリンク工法の試験施工動態観測挙動,第66回土木学会年次学術講演会,Ⅲ-026,2011.
3) Sekiguchi, H. and Ohta, H.: Induced anisotropy and time dependency in clays, Constitutive equations of soils, *Proc., 9th Int. Conf. on Soil Mechanics and Foundation Engineering*, Tokyo, pp.229–238, 1977.