建設中ロックフィルダムの地震時の沈下再現解析における飽和・不飽和条件の影響

独立行政法人土木研究所	正会員	○吉田	諭司
財団法人ダム技術センター	正会員	山口	嘉一
独立行政法人土木研究所	正会員	佐藤	弘行

1. はじめに

盛立段階であった中央土質遮水壁型ロックフィル型 式のAダムでは、2008年6月14日に発生した岩手・ 宮城内陸地震により、すべりを伴わない比較的大きな 沈下が発生した。本論文においては、岩手・宮城内陸 地震時の挙動の再現解析において累積ひずみ特性の飽 和・不飽和条件の違いによる挙動の変化を考察する。

2. 累積損傷解析による再現解析

2.1 解析方法

解析方法は、築堤解析により堤体内の静的応力分布 を求め、これを初期応力とした動的解析を行い、地震 時の堤体応答を求めた。築堤解析は Duncan-Chang モデ ルによる盛立過程を考慮した非線形弾性解析とした。 動的解析には複素応答法による等価線形解析を用いた。 累積損傷解析は、地震によるフィルダムの永久変位が、 繰返し応力により発生する築堤材料の残留ひずみに起 因するという考え方に基づいている¹⁾。累積損傷解析に おける繰返しせん断応力比 *SR*_d は、動的解析による増加 分の応力を用いた次式により算出する。

 $SR_{d} = \{(\sigma_{1d} - \sigma_{3d})/2\}/\sigma_{m}'$ (1) ここに、 σ_{1d} ,および σ_{3d} :動的解析による増分応力、

σ_m':静的解析の平均有効主応力である。

2.2 解析モデルおよび物性値

(1)解析モデル

解析モデルは地震発生時における最大断面の形状を 再現した2次元断面とした。築堤解析では、堤体およ び基礎をモデル化し、動的解析では堤体のみをモデル 化し底面を固定境界とした。図-1に解析モデルを示す。 (2)解析物性値

表-1 に築堤解析に用いた物性値を示す。物性値は、A ダムの設計値および試験結果を初期値とし、盛立中の 層別沈下計実測値より同定した値を用いた。

動的解析に用いる物性値は、A ダムの各材料に関す る動的変形試験結果より表-2 に示すとおりとした。な

キーワード ロックフィルダム、累積損傷解析、沈下、耐震

連絡先 305-8516 茨城県つくば市南原1番地6 独立行政法人土木研究所

表-1 築堤解析に用いた物性値

バーンタ	密度 (g/cm ³)		弾性係数		ポアソン比			強度		
/ /1	湿潤	飽和	k	n	\mathbf{R}_{f}	G	F	D	c (kN/m²)	ф (°)
コア	2.07	2.10	281.6	0.564	0.785	0.342	0.100	8.30	15.2	36.0
フィルタ	2.08	2.15	947.2	0.317	1.042	0.303	0.344	7.21	23.5	37.0
ロック	2.01	2.11	1073.5	0.131	0.744	0.240	0.183	10.68	64.7	41.5
基礎岩盤	-	-	4315MPa		0.25		-	-		

表-2 等価線形解析に用いた物性値

飽和	初期せん断剛性	ひずみ依れ	ポアソン比	
条件	$G_0 ({ m MPa})^{*1)}$	γr	h _{max} (%)	v *3)
不飽和	$294.879\sigma_{\ m}{}^{\prime 0.444}$	$1.06 imes 10^{-3}$	18.0	沢田式
不飽和	$628.347\sigma_{\rm m}{}^{\rm '0.665}$	$4.74 imes 10^{-4}$	15.6	
不飽和	$737.070 \sigma m'^{0.680}$	$4.80 imes10^{-4}$	14.0	
	 飽和 条件 不飽和 不飽和 不飽和 	飽和 初期せん断剛性 条件 G_0 (MPa)*1) 不飽和 294.879 $\sigma_m^{10.444}$ 不飽和 628.347 $\sigma_m^{10.665}$ 不飽和 737.070 $\sigma_m^{10.680}$	館和 初期せん断剛性 ひずみ依存 条件 G_0 (MPa)*1) γ_r 不飽和 294.879 σ_m ^{10.444} 1.06×10 ³ 不飽和 628.347 σ_m ^{10.665} 4.74×10 ⁻⁴ 不飽和 737.070 σ_m ^{10.680} 4.80×10 ⁻⁴	飽和 初期せん断剛性 ひずみ依存特性*2) 条件 G_0 (MPa)*1) γ r h_{max} (%) 不飽和 294.879 σ m ^{10.444} 1.06×10 ⁻³ 18.0 不飽和 628.347 σ m ^{10.665} 4.74×10 ⁻⁴ 15.6 不飽和 737.070 σ m ^{10.680} 4.80×10 ⁻⁴ 14.0

*2) $G/G_0=1/(1+\gamma/\gamma_r), h=h_{\max}(1-G/G_0)$

*3) v=0.450-0.006Z^{0.60}: コブ材料、v=0.375-0.006Z^{0.58}: フィルタ・ロック材料 Z: 堤体表面からの深度(m)

表−3 累積ひずみ特性

ゾーン名	飽和 条件	SR _d ~N _c 関係式		
コア	不飽和	$SR_{d}=2.15 \epsilon^{0.90} \cdot N_{c}^{(-0.51 \epsilon^{0.08})+0.19 \epsilon^{0.25}}$		
	飽和	SR_{d} =0.23 ϵ ^{0.60} · $N_{c}^{(-0.40 \epsilon 0.33)}$ +0.19 ϵ ^{0.21}		
フィルタ	不飽和	SR_{d} =0.44 ϵ ^{0.07} · N_{c} ^{-0.17} +0.06 ϵ ^{1.46}		
	飽和	SR_{d} =0.22 ϵ ^{0.87} · $N_{c}^{(-0.45 \epsilon 0.09)}$ +0.21 ϵ ^{0.15}		
ロック	不飽和	SR_{d} =0.47 ϵ ^{0.07} · N_{c} ^{-0.17} +0.37 ϵ ^{1.46}		
	飽和	$SR_{ m d}$ =0.57 ϵ ^{2.01} · $N_{ m c}$ ^(-0.96 ϵ ^{0.17})+0.38 ϵ ^{0.03}		
) CD · 42 · 1 ·				

) $SR_{
m d}$:繰返しせん断応力比, $N_{
m c}$:繰返し回数,

ε:累積軸ひずみ(%)

お、動的解析は堤体のみをモデル化しているため、基礎地盤でのエネルギー逸散を等価逸散減衰率として、 材料減衰率に一律15%を上乗せした。

累積損傷解析に用いる累積ひずみ特性は、表-3 に示 した A ダムの各材料に関する試験値を用いた。

(3)入力地震動

入力地震動は、岩手・宮城内陸地震時に A ダムには 地震計が設置されておらず、A ダム基礎部の地震記録 が得られていないため、A ダム近傍の既設のロックフ ィルダムにおいて推定された基礎部の加速度時刻歴²⁾

TEL: 029-879-6781 E-mail: yoshida44@pwri.go.jp

図-4 最大上下流方向加速度(単位:m/s²)

を用いた。図-2に入力地震動を示す。

2.3 解析ケース

解析ケースは累積ひずみ特性の飽和・不飽和条件に よる変形挙動の違いをみるため、飽和・不飽和条件を 変化させた表-4 に示す 3 ケースを設定し、実測沈下量 と比較した。

2.4 動的解析結果

図-3 に初期せん断剛性 G_0 を示す。 G_0 は堤体表面から の深度に応じて大きく、コアゾーンでは他のゾーンに 比べ小さい。図-4 に上下流方向最大加速度の鉛直分布 を示す。 G_0 が小さい堤体表面付近で応答加速度が大き くなり、入力の最大値加速度 4.65m/s²に対して、天端で は 4.66~5.92m/s²となっており、応答倍率は 1.0~1.3 倍 程度となった。

2.5 累積損傷解析結果

図-5 に沈下量の鉛直分布を示す。すべて不飽和条件 としたケース 1 ではコアゾーンでの剛性低下が小さい ため、層別沈下計実測値と一致しない。逆にすべて飽 和条件としたケース 2 ではすべてのゾーンで大きく剛 性が低下するため、ロック、コアのどちらも実測値よ り沈下量が大きくなった。コアのみを飽和条件とした ケース 3 では下流ロックゾーンでやや実測値と一致し

ないものの比較的高い精度で実測値と一致した。これ らのことからロックゾーンで大きな沈下が生じるとフ ィルタおよびコアもこれに追従し沈下量が大きくなる ことがわかる。また、ケース 3 で最も再現性が良くな った要因は、地震時に一時的にコア内の間隙水圧が上 昇したことが確認されており³⁾、それを反映したかたち となるケース 3 が最も実現象と近くなったためと考え られる。

3. まとめ

本論文では、岩手・宮城内陸地震によりすべりを伴 わない沈下が発生したロックフィルダムの再現解析を 行った。結果的にコア材料のみ累積ひずみ特性を飽和 条件とした方が高い再現性が得られた。

今後は、本手法を適用して湛水時における大規模地 震に対する完成ダムの耐震性能を検討する予定である。

参考文献

- 島本和仁、山口嘉一、佐藤弘行、安田成夫、佐野貴 之:フィルダムの累積損傷に伴う変形予測手法、ダ ム技術、No.244、pp.15-31、2007.1.
- 三石真也,大谷知樹,末久正樹,山口嘉一,岩下友 也,林直良,佐々木晋:平成20年(2008年)岩手・ 宮城内陸地震被害調査報告,土木研究所資料,第 4120号,pp.90-137,2008.12.
- 渡邊重広,榊原純:岩手・宮城内陸地震による胆沢 ダム堤体コアのクラック発生について、ダム技術, No.292, pp.54-63, 2011.1.