トンネル崩壊挙動に関する模型実験

近畿大学大学院 学生会員 〇中村 尚人 小林 嵩 近畿大学 正会員 久武 勝保 大野 司郎

1. 緒論

近年低土被りのトンネル施工に NATM を適用する 事例が増加しているが、建設中のトンネルの崩壊はし ばしば生じており,その代表例として牛鍵トンネルの 事故が広く知られている.しかし、そのような事例が あるにも拘らずトンネル崩壊に関するメカニズムは十 分解明されているとは言えない.

そこで、本研究は一定土被りのトンネルにおいてト ンネルが動的崩壊する過程をビデオカメラで撮影し, その結果を粒子画像流速測定法(PIV)によって変位べ クトル等を算出し分析した.

2. 実験装置および実験方法

本研究で使用した実験装置およびその設置状況を写 真1に示す.本実験では幅40cm,奥行き5cmの領域 内に,初期土被り 1.5cm のトンネルを設定した. そこ から1層約5mmの厚さでアルミ棒を1層ずつ載荷し ていき、この作業をトンネルが崩壊するまで続け、崩 壊状況をビデオカメラで撮影した.使用アルミ棒は, 摩擦角 31°,長さ 5cm,直径 3mm および 1.5mm の ものを2対3の比率で混合し、地盤の単位体積重量は 2.1g/cm³である.トンネルは直径 5cm のパイプに厚さ 0.095mmのコピー用紙を2枚重ねたものを緩まない ようにパイプに巻きつけ、それをトンネル設置部分に 設置し、アルミ棒を初期土被りの高さまで積み上げた 状態でパイプを抜き取り,実験を開始した.

写真1 実験装置

3.実験結果と考察

トンネル崩壊は土被りが 2.5D(D:トンネル直径)に 達してから、約1分30秒後に始まった.写真2の崩 壊開始時の状態を時間0秒としている.

写真2より、トンネルの左の肩部分より崩壊が生じ 始めていることが分かる.そして、崩壊開始から 0.03 秒経過した写真3の状態ではトンネル左肩付近のアル ミ棒がトンネルになだれ込んでいる.

トンネルの肩部分から崩壊が発生する結果は、久武 らの研究結果1)と一致している.

崩壊開始 0.06 秒(0.03 秒~0.06 秒)の状況を写真 4 に 示す.写真3と比べると、変位発生領域が地表面にま で達しており,またトンネルは原形をとどめていない.

崩壊開始 0.09 秒(0.06 秒~0.09 秒)の状況を写真 5 に 示す. これより, 崩壊がほぼ終了段階に達しているこ とが分かる.また、トンネル上部から地表面に至る領 域が他の部分に比べて色が異なることから、この部分 全体が崩落していることが分る.

キーワード:トンネル、崩壊、アルミ棒実験 連絡先:〒577-8502 東大阪市小若江3-4-1 近畿大学理工学部 TEL:06-6730-5880

写真4 崩壞開始0.06秒

写真5 崩壞開始0.09秒

崩壊開始から 0.03 秒経過した状態の変位ベクトル を図 1-a に示す.これより,崩壊領域が鉛直上方だけ でなく左右に広く発達していることが分る.

これは、テルツァーギの論文の結果²⁾よりも広い範囲に変位領域が発達していることを示している.

また,この結果から変位発生領域はトンネルから斜 め方向に直線的に発達するのではなく,トンネル下部 からトンネル高さまでは斜め方向,トンネル上端から 地表面までの中間までは鉛直方向,そこから地表面ま では再び斜め方向に発達している.

崩壊開始 0.06 秒(0.03 秒~0.06 秒)の変位ベクトルを 図 1-b に示す.これより,図 1-a に比べて崩壊領域が さらに広くなり、またベクトルの長さが長くなってい ることから、たくさんのアルミ棒がトンネルに向かっ て崩落またはなだれ込んでいる状況がうかがえる.

また、トンネルの左領域のベクトルが右領域のそれ と比べるとより多く発達している.これはトンネルの 左肩部分から崩壊が発生しているためだと考えられる.

崩壊開始 0.09 秒(0.06 秒~0.09 秒)の変位ベクトルを 図 1-c に示す. これより、ベクトルが発達している領 域が図 1-b より減少しており、またトンネル周辺で変 位が鉛直に分布している. これは崩壊が終了し始めた ためだと考えられる.

また、写真の結果とベクトル図を比較すると、写真 では崩壊がトンネル上部領域付近に発達していること が見てとれるが、変位ベクトル図ではトンネル上部領 域以外にもかなり広い範囲に崩壊領域が発達している

図 1-c 変位ベクトル(0.09 秒)

という、写真の結果だけでは認められなかったことが 確認できた.

4. 結論

本実験より、トンネルが崩壊する過程を写真、変位 ベクトルにより表現することができた.トンネルが崩 壊する際にはかなり広い範囲に崩壊領域が発生し、ト ンネル上部が崩落するだけではなく周辺部からもトン ネルに向かってなだれ込んでいることが確認できた. 参考文献

- 1)久武勝保,大野司郎,片山達章,大前幸寛,鈴木啓 介:トンネルの安定性に対するインバート工の効果 に関する遠心模型実験,土木学会論文集F1特集号, Vol.67, No3, pp.1-8, 2011.
- 2)Terzaghi, K : In Proctor, R.V., White, T.(Eds), Rock defects and load on tunnel supports rock tunneling with steel supports.Commercial Shearing and stamping Co., Youngstown, Ohio, pp.15-99, 1946.