ベンダーエレメント法を用いたせん断波測定の移動床実験への適用

1. はじめに

地盤内部の応力を実測することは、計測機器と土の 相互作用を排除できないことから実験・実測共におい て一般的に難しい.一方、近年要素試験において BE 法 を用いた弾性波測定の手法が盛んに研究されてきた^[3]. これは、式(1)のように地盤中を伝わるせん断波速度 Vs と土の密度 ρ , せん断剛性 G が次式で表されることを 利用し、せん断波速度を計測することにより材料の剛 性を評価するものである.

$$G = \rho V_s^2 \tag{1}$$

BE(ベンダーエレメント)とは 2 枚のピエゾ素子を組み 合わせたもので、電圧振動を物理振動に変換し、逆に 物理振動を電圧振動に変換する. BE は送受信両方に利 用可能であること、サイズが小さく周辺地盤への影響 が少ないこと等の利点があるが、模型地盤への適用例 は極めて少ないのが現状である. 福王ら(2012)により、 BE 法を模型地盤に適用すると共にトモグラフィ解析を 行うことで密地盤の一様模型地盤におけるせん断波速 度分布を推定することができた. 本報告では、この手 法を移動床実験に適用することで、再分配された応力 の評価を試みる.

2. 移動床実験

本研究における移動床実験は海老塚ら(2010)の行っ たもの再現した,図1に示す実験装置を用い,底面に 設置された5枚の可動床板を上昇・下降させることに より土圧の再配分を行う.移動床には1枚につき荷重 計を5つずつ取り付け,床板移動に伴う境界部での土 圧変化を計測した.

図1 移動床土槽の写真(a)と立面図(b)

3. 弾性波トモグラフィの精度検証

模型地盤周囲に BE を配置してトモグラフィ計測を行うことで BE の各組み合わせにおけるせん断波の伝達時

東京大学 工学系研究科 社会基盤学専攻 学生会員 〇福王 翔 東京大学 生産技術研究所 正会員 桑野 玲子 間データが得られ、これを逆計算することで地盤内部 のせん断波速度分布を推定できる.本研究ではトモグ ラフィ逆解析ソフトとして㈱ダイヤコンサルタントの 「E-tomo」を用いた. 逆解析によるせん断波速度分布 の再現精度及び測定点数の影響を調べるために数値実 験を行った.本模型地盤において信号の伝達可能距離 である 30×40cm^[1]を解析範囲とし、測定点数がそれぞ れ 24, 39, 59 点の場合について計算を行った. 図 2(a) に示す速度分布モデルに対しまずそれぞれの測定点に おけるせん断波の伝達時間データを順解析により求め た.得られたデータ対して E-tomo を用いて逆解析を行 うことで元の速度分布モデルを推定した結果の RMS 残 差を図2(b)に示す.図より測定点数を増やすことでRMS 残差は減少し精度の高い結果が得られることが分かる. しかし一方で測定点数の増加に伴ってデータ量が指数 的に増加するという問題点もある.図より 39 点と 59 点の RMS 残差に大きな違いは見られないため、データ 処理の煩雑さを考慮して本研究では 39 点を採用する.

図2 数値実験に用いた速度分布モデル(a)と解析 結果の RMS 残差(b)

4. 移動床実験への適用

移動床実験の模型地盤中に福王ら(2012)と同様 BE を 設置してせん断波トモグラフィを行った.まず床板移 動前に測定を行い,次に床板の両端2枚ずつを1mm下 降させた後に再び測定を行うことにより移動前後の速 度構造の違いを推定する.

4.1 密地盤(相対密度 Dr=70%)の場合

解析結果を図3に示す.(a)は移動前,(b)は移動後, (c)は移動後の波線,(d)はスケールである.図より移 動前のせん断波速度は上部で遅く下部で速い分布であ り,重力場での一様地盤をよく再現している.移動後 を見ると,せん断波速度は床板中央で高く両端で低い 構造になっている.模型実験において床板をさらに 10mm まで降下させてすべり線を測定し,せん断波速度 の変化量と比較したところ,よく一致した(図6).

図3 移動前(a),移動後(b),変化量(c)の解析結果 (Dr=80%)

図4 せん断波速度変化量とすべり線の比較 次に解析結果を境界において測定した応力値と比較す る.応力σはせん断剛性Gと正規化関数f(e)で表され ^[3](式(2)),正規化関数は間隙比eの関数である(式(3)).

$$G = 8919 f(e) \cdot \sigma^{0.96} \tag{2}$$

$$f(e) = \frac{(2.17 - e)^2}{1 + e}$$

解析によるせん断波速度を式(2)(3)により平均主応力 に換算した.底面に近い下3行の解析データの応力値 とロードセルにより計測した応力値を比較した(図5). 図より変化前は計算と実測でよく一致しているが,変 化後の解析値は実際の応力を過小評価していることが わかる.しかし,応力上昇・下降の変化やとの変化位 置をよく捕らえられており,応力の再分配を定性的に 捕らえることができたと言える.

図5 変化前(a)と変化後(b)における計算応力と計測 応力の比較

4.2 緩地盤(相対密度 Dr=40%)の場合

緩地盤に対する解析では図 6 より妥当な結果が得ら れなかった.原因として,緩地盤では拘束圧が低く受 信信号が微弱であるため,伝達時間の読み取りを行う 際の誤差が大きくなってしまうことが考えられる.

5. まとめ

本研究ではBEを用いたせん断波測定を移動床実験に 対して行い変化前後の内部構造を推定した.測定点数 を最適化した後にトモグラフィ解析を行ったところ, 密地盤では実測値とよく一致する結果が得られ,平均 主応力は測定値と定性的に一致した.一方,緩地盤で は拘束圧が低く受信信号が微弱であったため地盤の内 部状態をよく再現できなかった.

参考文献 [1]福王翔, 桑野玲子, ベンダーエレメント法を用 いたせん断波測定の一様地盤への適用, 第 47 回地盤工学研究 発表会, 2012 [2]海老塚裕明, 桑野玲子:盛土内埋設構造物の 作用土圧の評価のための移動床実験, 第 45 回地盤工学研究発 表会, pp. 709-710, 2010 [3]Suwal. L. P and Kuwano. R: Small strain stiffness measurement of sand and gravel using disk shaped piezo-electric transducer, 5th international conference on earthquake geotechnical engineering, 2011

(3)