堰下流側に形成される跳水部の流速特性

Velocity characteristics in hydraulic jump at downstream of weirs

日本大学理工学部土木工学科 正会員 安田陽一 日本大学大学院理工学研究科土木工学専攻 学生会員 〇佐藤麻衣

3. 堰下流側の流速特性

台形堰及び鉛直堰下流側で 形成される跳水内部の流速特 性を検討するために,流下方

向成分の流速 u を(1)の関係で 整理した一例を図 2 に示す. ここに,d_c は限界水深, U_{max}

は測定断面での最大流速,z₁

は底面からUmax が生じる位置

までの鉛直高さ,Zは底面から

U_{max}/2 が生じる位置までの鉛 直高さ(主流幅) である.

<u>1. まえがき</u>

可動堰や固定堰などの河川構造物を造る際に,河床保護のための水叩きや護床工を設置することが義務付けられている¹⁾.しかしながら,固定堰直下流側では護床ブロックが下流側へ流されてしまう事例が確認されている.既往の文献から,跳水中の主流の位置が跳水始端での乱流境界層の発達状態によって異なることが報告されている^{2),3)}. 堰直下流側に跳水が形成される場合,跳水部内の流速特性について不明である.ここでは、台形堰および鉛直堰下流側に形成される跳水部の流速特性について実験的な検討を行い,流線の曲がりの影響について考察した.

<u>2. 実験方法</u>

実験は,水路幅 0.8m,長さ 14.5 m,高さ 0.6m の長方形水平断面水路を用いて行った.実験条件を表-1 に示す.台形堰および鉛直堰模型下流側に跳水を形成させた.測定したポイントは図 1 に示した跳水始端から流下方向に x=0.65L_j.0.86 L_j,1.08 L_j,1.46L_j(跳水長²⁾は L_j=5.5×h_{2*}で求めた)の位置で,横断方向へ 10 cm 間隔に 7 ヵ所,それぞれ測定した.流速の測定には I型2 次元電磁流転計を用いた(採取間隔50 msec,採取時間を90 sec).

	台形堰(接合部からの距離ℓ)			鉛直堰(淀み点からの距離 Q)		
	0.10m	0.25m	0.45m	0.10m	0.25m	0.45m
流量Q(m ³ /s)	4.80×10 ⁻²					
レイノルズ数Re=q/v	59500	59500	59500	59500	59500	59500
跳水始端のフルード数 F1	6.29	5.82	5.57	4.43	4.36	4.21
跳水始端水深h _l (m)	0.0210	0.0222	0.0228	0.0266	0.0269	0.0275
跳水終端水深(実験値)h ₂ (m)	0.173	0.168	0.166	0.154	0.148	0.146
跳水長 L _j = 5.5 h _{2*} (cm)	0.970	0.940	0.930	0.850	0.840	0.830

表1 実験条件

図1 測定位置(跳水部下流側を主に測定)

 $u/U_{max} = f(z/Z, y/(B/2), X/d_c, x/L_j, F_1)$ (1)

図2に示すように、台形堰($\ell/d_c=1.4$)の $x/L_j=0.65$ の場合は-0.75 $\leq y/(B/2) \leq 0.75$ の範囲で、 $x/L_j=0.86$ の場合は-0.50 $\leq y/(B/2) \leq 0.50$ の範囲で(1)の関係で整理できる。鉛直堰($\ell/d_c=1.4$)の $x/L_j=0.65$ の場合は-0.75 $\leq y/(B/2) \leq 0.75$ の範囲で、 $x/L_j=0.86$ の場合は-0.25 $\leq y/(B/2) \leq 0.25$ の範囲で(1)の関係で整理でき、 $x=0.86L_j$ では台形の場合と比べて(1)の関係が得られる範囲が狭くなる。これは、堰からの越流水脈が台形堰と比べて3次元的になるためと考えられる。 $\ell/d_c=3.5$ 、 $\ell/d_c=6.3$ の場合も同様な傾向が見られる。 $\ell/d_c=3.5$ では、台形堰の $x/L_j=0.65$ の場合、-0.75 $\leq y/(B/2) \leq 0.75$ の範囲で(1)の関係で整理できるものの、 $x=0.86L_j$ ではdu/dz<0の範囲でuの値が $U_m/2$ より大きいため(1)の関係で表示することはできない。なお、 $\ell/d_c=6.3$ では台形堰の $x/L_j=0.65$ の場合は-0.50 $\leq y/(B/2) \leq 0.50$ の範囲で、鉛直堰の $x/L_j=0.65$ の場合は-0.50 $\leq y/(B/2) \leq 0.50$ の範囲で、300 = 0.50の第一で、 $x = 0.86L_j$ では $x = 0.86L_j$ ではx = 0.50 = 0.50の第一で、 $x = 0.86L_j$ ではx = 0.50 = 0.5

台形堰および鉛直堰の下流側に形成される跳水部の流速分布については,流線の曲りの影響を受けて跳水区間で jet(噴流)の性格が続くことがわかった.特に中央部を中心にこの傾向が見られる.また鉛直堰の場合,台形堰に比 べて堰からの越流水脈が3次元的になるため(1)の関係で整理できる横断方向範囲が狭まる. キーワード 跳水,台形堰,鉛直堰,減勢工,主流の位置

連絡先 〒101-8308 東京都千代田区神田駿河台 1-8, TEL&FAX: 03-3259-0409, E-mail: yokyas@civil.cst.nihon-u.ac.jp

<u>4. 跳水中の最大流速の位置</u>

眺水中の最大流速Umaxの位置z₁についてzı/hı=f(x/L_j, y/(B/2), ℓ/dc, F₁)の関係で整理したものを図3 に示す. 図中の 破線は眺水流入部で流線の曲りの影響を受けない跳水中のz₁の変化をx/L_j=1.5 まで外想して示している. 青は跳水 始端で乱流境界層が発達していない場合(UD),赤は乱流境界層が発達している場合(FD)を示す²⁾. ℓ/dc=1.4 では台形 堰の場合,壁近く(y/(B/2)=0.75)を除いてx/L_j≦0.86 の範囲で破線と同様な変化を示し,鉛直堰の場合, x/L_j≦1.46 の 範囲で破線と同様な変化を示す. すなわち,鉛直堰の場合が台形堰の場合よりjet(噴流)と同様な傾向が見られる 範囲が広い. ℓ/dc=3.5, ℓ/dc=6.3 においても同様な傾向が見られる. これは,眺水部に流入する射流の流速分布形に よるものと考えられる. 台形堰の場合, 1/12 乗則の指数分布形を示す⁵⁾のに対し,鉛直堰の場合,水深方向の流速 差が小さいほぼ一様な分布形を示す⁶⁾.

5. まとめ

堰下流側に形成される跳水の流速特性について検討した結果,跳水部に流入する射流の流速分布が流線の曲りの 影響を受けてx/L_j>0.6 でもjet(噴流)の性格が続くことが示された.台形堰と鉛直堰との比較では越流水脈の形状が 異なることから流速分布および主流の発達について違いが生じることが分かった.特に,最大流速が生じる位置に ついては,鉛直堰の場合,跳水区間の約1.5 倍までjet(噴流)と同様な直線変化となることを示した.

<u>参考文献</u>

- 1) 建設省河川局監修, 改訂新版建設省河川砂防技術基準(案) 同解説・設計編[II]技法堂出版, 1999.
- Ohtsu, I., Yasuda, Y., and Awazu, S., Free and Submerged hydraulic Jumps in Horizontal Rectangular Channel, Report of the Research Institute of Science and Technology, Nihon University, No.35, 1990, pp.1-50.
- 3) 松澤貴士,髙橋正行,大津岩夫,跳水内部の空気混入率及び流速分布に対する流入射流の影響,第52回日本大学工学部学術研 究報告会,土-2-10, 2009, pp.102-105.
- 4) Wu, S. and Rajaratnam, N., Free jump, Submerged jump, and Wall jets, Journal of Hydraulic Research, IAHR, Vol.33, No.2, 1995, pp. 197-212.
- 5) 佐藤麻衣, 安田陽一, 台形堰下流側に形成される跳水中の流速特性, 第38回土木学会関東支部第Ⅱ部門, 2011, CD-ROM.
- 6) 佐藤麻衣, 安田陽一, 鉛直堰直下流側に形成される跳水中の流速特性, 第 39 回土木学会関東支部第Ⅱ部門, 2012, CD-ROM.