内部ケルビン波の砕波により発生する流れに関する研究

一毅	○小窪	学生会員	北見工業大学大学院
恵介	中山	正会員	北見工業大学
哲也	新谷	正会員	首都大学東京
淳一	大塚	正会員	寒地土木研究所
知也	岡田	正会員	国土技術政策総合研究所
靖憲	渡部	正会員	北海道大学
靖幸	丸谷	学生会員	北見工業大学大学院

1. はじめに

東京湾や網走湖などの沿岸域の閉鎖性水域や汽水 湖では、淡水が流入することで、約50 cmから1 mの 明確な密度界面が形成されることがある.その場合2 成層近似が成り立つことが知られており、明確な密 度界面は水域を上層と下層に分離させ、その密度界 面の変化である巨大な振幅を持った内部波により、 流動・物質輸送が支配されていることが報告されている

(Prison&Weyhenmeyer,1994).水深数10 m程度で塩淡に より密度界面が形成される場合,内部波の波速は数 m/s 程度であることから,内部変形半径は数10 kmで あると考えられる.水平スケールが数10 km以上の水 域においては,コリオリの影響を受けた内部ケルビ ン波が発生すると予想される.一般的に沿岸域では 斜面が存在し,内部ケルビン波は浅水域に進入する ことで砕波すると考えられる.過去の研究では,斜 面上で内部波が砕波することで生じる残差流につい て述べたものが存在する(Nakayama&Imberger,2003).

しかし、コリオリを考慮することで内部ケルビン波 がどのような形態で砕波し、どのような物質輸送を 発生させているのか解明されていない.そこで本研 究では、3次元数値モデルを利用し、内部ケルビン波 の砕波に関する解析を行い、超音波流速計(以下UVP とする)を用いた室内実験結果と比較することで、 内部ケルビン波の砕波により発生する流れについて 検討を行うことを目的とする.

2. 3 次元数値モデルを用いた解析

内部ケルビン波の砕波により発生する流れの解析 を行うために、計算領域を波の進行方向 4.5m, 奥行

図-1 コリオリ無し・有りにおける内部ケルビン波に よる砕波解析の計算領域の概略図

き0.4 m, 高さ0.3 m, 斜面勾配3/20と設定し,上層の 密度を1020 kg/m³,下層の密度を1000 kg/m³とし,上 下層厚が異なる4ケースを用意した(図-1).また, それぞれのケースの下層厚は0.15 m, 0.17 m, 0.2 m, 0.24 mとし,対応するコリオリ無しのケースをcase1 からcase4,コリオリ有りのケースをcase5からcase8 として検討を行った.全振幅が,コリオリ無しにお いてcase1 で0.01 m となるように設定し,その他の ケースでは同様なフラックスを左端の上下層に与え ることで,同じエネルギーにより発生する内部ケル ビン波の解析を行った.コリオリ発生のための計算 領域の回転速度は2 π /30 rad/sとし,内部波の周期は11 sを与えた.

3. 結果と検討

コリオリ無しおよび有りの全ケースにおける,最 大遡上距離を確認したところ,コリオリ無しおよび 有りの全ケースにおいて,上層厚が薄くなるほど遡 上距離が小さくなる傾向があることが分かった(図 -2).これは,KdV理論より,ソリトン形状が存在し なくなるcritical levelの存在が示されており,

case4,case8ではcritical levelが斜面途中に存在する条件となっていたため, case1,case5と比較して十分に浅

キーワード Coriolis, Internal Wave Breaking, Two Layer System, 3D numerical computation, UVP

連絡先 〒090-8507 北海道北見市公園町 165 番地 北見工業大学大学院工学研究科 水圈環境研究室 TEL0157-26-9473

図-5 奥行き方向成分流速の時間変化. 砕波発生地点の中立密度界面位置における計測結果. (a) UVP による奥行き方向の流速成分. (b) 数値計算結果.

水変形が行われず遡上距離が小さくなったと考えら れる.コリオリ無しでは3次元的な奥行き方向の流れ の発生は顕著に見られなかったが,コリオリ有りの 内部ケルビン波が斜面上で砕波する場合には進行方 向の右手側壁側にエネルギーが集中するため,砕波 により発生した乱れが反対側の側壁付近まで輸送さ れ,その結果,密度界面が大きく乱されることが分 かった(図-3).その輸送を支配している要因を検 討するため,case5における中立密度界面上における1 周期の残差を計算した.その結果,手前から奥への 明確な輸送およびそれに伴う水平循環の発生が確認 された(図-4).最後に,数値計算結果の検証のた め,UVPを利用した実験を行った.計算領域と同ス ケールの回転水槽を用い, case5における砕波発生地 点での実験結果との比較を行ったところ,数値計算で 確認された砕波渦前後の収束と発散を確認すること が出来た(図-5).

4. おわりに

内部ケルビン波の砕波により発生する流れによる 物質輸送を解明することを目的とし,解析・検討を 行った.その結果,上層厚が薄くなるほど遡上距離 が小さくなる傾向があることが分かった.内部ケル ビン波の砕波により物質が乱れも含み水平循環によ り輸送されている可能性を示した.数値計算結果の 検証のためUVPを利用した比較を行い,収束・発散 など現象の再現ができていることが確認された.