階段状水路における空気混入不等流の水面形計算法

Н.,

まえがき

階段状水路における skimming flow¹は,乱流境界層が水面に到達した inception point より下流側では,流れに空気を取り込み空気混入射流となる (図-1参照).この空気混入流の水深,流速,エネルギーを知ることは水工 設計上重要である.

従来, skimming flow における擬似等流での空気混入率,水深,流速,お よびエネルギーについては、かなり明らかにされている²⁾. しかしながら,不 等流区間の空気混入流特性,すなわち空気混入率,水深,流速,およびエネル ギーの流下方向変化については検討の余地がある.

本報告では、水路傾斜角度 θ=55°の階段状水路の skimming flow における 空気混入不等流を対象に気相の連続式 ³と空気混入の影響を考慮した水面 形方程式 ⁴に基づき、skimming flow における不等流区間の空気混入率、 水深、エネルギーの流下方向変化を算定できることを示した.

実験

水路傾斜角度 θ =55°のもとで相対ステップ高 S/d_c =0.2,0.3,0.5,0.7[d_c =(q_w^2/g)^{1/3}, q_w :単位幅流量 (q_w = $\int_{0}^{y_{0.9}} (1-C)udy$), C: 空気混入率{C= 空気の体積/(空気の体積

+水の体積), y_{09} : 空気混入率 C が 90%となる y の高さ,u:流速,g:重力加速度]の skimming flow を対象とし、空気混入流の空気混入率 C と流速 u の測定を行った. C および u は二点電極型ボイド率計を用いて測定した(採取時間間隔 20 μ sec,測定 時間 20sec). また、aerated flow の C, u およびエネルギーの評価断面をエッジ断 面(図-1 参照)とした. inception point は水路横断方向に常に空気混入する最上流 側の位置と定義し目視で決定した.

空気混入率分布

レイノルズ数 $R(R=q_w/v_w; v_w=n$ の動粘性係数)が $R\geq 3\times 10^4$ の不等流区間の skimming flow の空気混入率 C は次の関係で示される $^{5}(図-2$ 参照).

$$C = f\left(\frac{y}{y_{0.9}}, \frac{H_s}{d_c}, \frac{S}{d_c}, \theta\right)$$
(1)

不等流区間の場合, inception point より下流側では水面より空気が混入し,与えら れた θ と S/d_c に対して $(x_s-x_i)/d_c[x_i:H_i$ までの流下距離, $x_s:H_s$ までの流下距離]が大き くなるにつれて仮想底面近く $(y/y_0=0)$ まで空気が混入している.

断面平均空気混入率 Cm は次式で定義される.

$$C_m = \frac{1}{y_{0.9}} \int_0^{y_{0.9}} C dy$$
 (2)

各断面での*C_mの値とChanson*による気泡の拡散モデル(3)式³⁾を用いると空気混入率分布が図-2の各線のように示される.

$$C = 1 - \tanh^2 \left(k' - \frac{1}{2D'} \frac{y}{y_{0.9}} \right)$$
(3)

ここに、 $D'[=(0.848C_m-0.00302)/(1+1.1375C_m-2.2925C_m^2)]$ は無次元化された乱流拡散係数であり、 $k'[=\tanh^{-1}\sqrt{0.1} + 1/(2D')]$ は積分定数である³.

Inception point より下流側の C_mを算定する式については, Chanson による気相の 連続式³[(4)式]の適用を試みる.

$$\frac{1}{\left(1-C_{mu}\right)^{2}} \operatorname{Ln}\left(\frac{1-C_{m}}{C_{mu}-C_{m}}\right) - \frac{1}{\left(1-C_{mu}\right)\left(1-C_{m}\right)} = k_{0}x' + K_{0} (4)$$

ここに、 C_{mu} は擬似等流区間の C_m 、 C_{mi} は inception point での C_m 、x'は($x-x_i$)/ d_{wi} 、 d_{wi} は inception point における clear water depth d_w [$d_w=(1-C_m)y_{0.9}$], $k_0=u_id_{wi}\cos\theta/q_w \ge K_0=1/(1-C_{mu})[1/(1-C_{mu})\times Ln\{(1-C_{mi})/(C_{mu}-C_{mi})\}-1/(1-C_{mi})]$ は積分定数、 u_i は気泡の上昇速度であ

キーワード:階段状水路,空気混入流, skimming flow, 水面形計算, エネルギー 連絡先:〒101-8308 東京都千代田区神田駿河台 1-8-14 Tel.&Fax. 03(3259)0676

る. ここでは u_r =0.4m/s とし³⁾ ,境界条件として q_w , d_w , C_{mi} ,および C_{mu} には実験値を与え C_m を計算した(図-3). 図に示されるように、計算値は実験値とほぼ一致し、与えられた S/d_c に対にして(x_s - x_i)/ d_c の増加にともない C_m は大きくなる.

Inception point の d_{wi} , C_{mi} , および H_i については, Boes and Hager の実験式⁶と今回の実験結果がほぼ一致していることを確認できた. そこで, d_{wi} , C_{mi} , および H_i の値には Boes and Hager の実験式⁶, H_u における断面平均空気混入率 C_{mu} の値には高橋・大津の実験式²からの値を用い,気相の連続式[(4)式]によって C_m を求めると各 S/d_c 毎に図ー4 の各線が得られる. $\theta = 55^{\circ}$ の場合, 与えられた($x_s - x_i$)/ d_c に対して, C_m は S/d_c による影響を無視できることが示された. また,気相の連続式[(4)式]と気泡の拡散モデル[(3)式]を用いることで,不等流区間の C_m の変化と空気混入率分布を示すことが可能となった.

流速分布

 $R \ge 3 \times 10^4$ の不等流区間のskimming flowの流速uは次の関係で示される5(図-5参照).

$$\frac{u}{u_{0.9}} = f\left(\frac{y}{y_{0.9}}, \frac{H_s}{d_c}, \frac{S}{d_c}, \theta\right)$$
(5)

ここに、 u_{09} は $y=y_{09}$ での流速である.図に示されるように、不等流区間および擬似等流区間ともに流速分布は S/d_c および $(x_s=x_t)/d_c$ によらず1/N乗則[(6)式]で示され、 $\theta=55^\circ$ の場合、不等流区間および擬似等流区間ともにN=4.5で近似される(図-5 参照).

$$u/u_{0.9} = \left(y/y_{0.9}\right)^{1/N} \tag{6}$$

空気混入流における水面形およびエネルギー

skimming flow の空気混入流の不等流区間の水面形方程式は、高橋・大津 4によって次式のように導かれている.

$$\frac{\mathrm{d}d_w}{\mathrm{d}x} = \sin\theta \frac{d_w^3 - d_{wu}^3}{C_n d_w^3 \cos\theta - C_v d_c^3} \tag{7}$$

ここに、 $C_v \geq C_p$ はC分布と u/u_{09} の分布から求められる補正係数⁴, d_{wu} は擬似等流状 態の clear water depth である^{1),4}. 流れは射流であるため,境界条件として inception point $O d_{wi}$ を与え、下流側に向かって(7)式を数値積分すると不等流区間 $O d_w$ が求まる. こ こでは、不等流区間 $O C_m$ を気相の連続式[(4)式]から求め、C分布を気泡の拡散モデル [(3)式],流速分布を1/4.5 乗則で近似し、 C_p および C_v を求め、(7)式から d_w を計算した (図-6参照).また、計算された $d_w \geq C_m$ の値および $y_{09}=d_w/(1-C_m)$ を用いると空気混入 流水深 y_{09} が得られる(図-6参照). $y_{09}/d_c \geq d_w/d_c$ の計算値は15%以内の差で実験値と 一致した.また不等流区間では、clear water depth d_w/d_c は流下するにつれて小さくなるが、 空気混入流水深 y_{09}/d_c に対する S/d_c の影響を調べた結果を図-7に示す.図-7より θ =55°、 S/d_c <0.5 の場合、与えられた(x_s - x_i)/ d_c に対して S/d_c の増加にともない d_w/d_c および y_{09}/d_c は大きくなり、 $0.5 \leq S/d_c \leq 1.0$ [=(S/d_c)s; (S/d_c)s は skimming flow の形成される上限の S/d_c の値¹⁰]の場合でほぼ一定値となっている.

仮想底面を基準面とすると空気混入流の比エネルギー E_s は次式で示される^{1),2)}.

$$E_s = C_p d_w \cos\theta + C_v V_w^2 / (2g) \tag{8}$$

10

20

30

算定された d_w と C,、 C_p の値を用い(8)式で E,を求めると図-8の各線が得られる.図より E, d_c は与えられた S/ d_c に対して、不等流区間においては $(x_s-x_i)/d_c$ の増加に伴い大きくなり、擬似等流区間では一定値に漸近する.また、 与えられた $(x_s-x_i)/d_c$ に対して S/ d_c の増加にともない E_s/d_c は小さくなり、0.5 \leq S/ $d_c \leq 1.0$ [=(S/ d_c)_の範囲ではぼ一定値となっている. まとめ

水路傾斜角度 θ=55°の階段状水路における空気混入不等流区間の skimming flow の空気混入率分布,流速分布,空気混入流水 深および比エネルギーを解析的に求める方法が得られた.また,空気混入流の内部特性に対する相対ステップ高さ S/d_cのおよ ぼす影響を明らかにした.

参考文献

1)Ohtsu, I., Yasuda, Y., Takahashi, M.: Flow Characteristics of Skimming Flows in Stepped Channels, J. Hydr. Engrg., ASCE, Vol. 130, No.9, pp. 860–869, 2004. 2)高橋, 大津、階段状水路の空気混入流特性に対する水路傾斜角度の影響,水工学論文集,土木学会,第54巻, pp. 1057–1062, 2010.

3) Chanson, H.: The Hydraulics of Stepped Chutes and Spillways., A. A. Balkema, Lisse, The Netherlands, 2000.

4)高橋,大津: 階段状水路における不等流区間の空気混入流特性,水工学論文集,第55巻, pp.1123-1128, 2011.

5)高橋,安田,大津:階段状水路における空気混入射流に対するレイノルズ数の影響,水工学論文集,土木学会,第50巻,pp.871-876,2006.

6) Boes, R. M. and Hager, W. H. : Hydraulic Design of Stepped Spillways, J. Hydr. Engrg., ASCE, Vol. 129, No. 9, pp. 671–679, 2003.