密度の傾斜を考慮した傾斜機能矩形板の三次元弾性解析

大分工業高等専門学校	Æ	슻	員	〇名	木里	予晴	暢
豊橋技術科学大学	Æ	会	員	樋	口	理	宏
豊橋技術科学大学	非	会	員	足	立	忠	晴
大同大学	Æ	会	員	水	澤	富	作
北海道大学	F	슻	員	三	Ţ	-	隆

1. まえがき

傾斜機能材料 (Functionally Graded Materials) とは, 「空間的に一つの機能から他の機能へと連続的または 階段的に変化する一体の材料」と定義されており¹⁾, 例えば、ある方向の成分傾斜により、材料特性(縦弾 性係数,ポアソン比,密度や熱膨張係等)が変化する 結合界面が存在しない不均質な複合材料である. 土木 構造材料としての傾斜機能材料は、従来の等質・等方 な材料では用いることのできない過酷な環境下での使 用が十分に期待できる.しかし,その実用化には,使 用環境に応じた材料の組み合わせ、期待する機能を発 現する成分傾斜分布や構造部材としての力学的挙動を できるだけ精確に把握することが不可欠となる.

本研究では、構造部材としての傾斜機能矩形板の静 力学的特性 (変形特性,変位・応力分布特性) と材料 の不均質性の関係を明らかにすることを目的としてお り、本稿では、自重を受ける傾斜機能矩形板の静力学 的特性に与える板厚および縦弾性係数と密度の不均質 性の影響について報告する.

2. 基礎方程式と境界条件

図-1には、傾斜機能矩形板と直交座標系が示してあ る. ここで, a, b, h は, ぞれぞれ, 矩形板の長さ, 幅, 厚さであり, u, v, w は, それぞれ, x, y, z 方向の変位成 分である.また、三次元弾性論に従う周面が単純支持 された傾斜機能矩形板は微小変形かつ線形弾性である とし、自重の影響は面外方向の物体力で考慮する.

傾斜機能材料の不均質性は板厚方向のみに依存する ものとし、本研究では、縦弾性係数 E(z) と密度 $\rho(z)$ を 次のように仮定する.

$$E(z) = E_b \exp \{p(z / h)\}, \quad p = \ln (E_t / E_b)$$
 (1)

$$\rho(z) = \rho_b \exp \{r(z / h)\}, \quad r = \ln \left(\rho_t / \rho_b\right)$$
(2)

傾斜機能矩形板, 直交座標系と変位方向の定義 図-1

ただし、 $E_b \ge E_t$ および $\rho_b \ge \rho_t$ は、それぞれ、矩形板の 下面および上面の縦弾性係数および密度である.また, $p \ge r$ は、それぞれ、縦弾性係数比 E_t / E_b と密度比 ρ_t / ρ_b に依存する材料の不均質性を表すパラメータである. なお、ポアソン比νは一定であると仮定する.

面外方向の物体力の影響を考慮した傾斜機能矩形板 の基礎方程式は、次のように表される.

$$(\mu_{b} + G_{b})\frac{\partial e}{\partial x} + G_{b}\left\{\nabla^{2}u + \left(\frac{p}{h}\right)\left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right)\right\} = 0,$$

$$(\mu_{b} + G_{b})\frac{\partial e}{\partial y} + G_{b}\left\{\nabla^{2}v + \left(\frac{p}{h}\right)\left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right)\right\} = 0,$$

$$(\mu_{b} + G_{b})\frac{\partial e}{\partial z} + G_{b}\left\{\nabla^{2}w + 2\left(\frac{p}{h}\right)\left(\frac{\partial w}{\partial z}\right)\right\} + \left(\frac{p}{h}\right)\mu_{b}e + \frac{\rho(z)g}{E(z)} = 0$$
(3)

$$\mu_b = \frac{E_b \nu}{(1+\nu)(1-2\nu)}, \quad G_b = \frac{E_b}{2(1+\nu)}$$
(4)

ここで、 ∇^2 はLaplacian, e は体積ひずみであり、g は 重力加速度である.また,矩形板の下面と上面での境 界条件は、次式で与えられる.

$$\sigma_z = \tau_{yz} = \tau_{zx} = 0 \qquad (z = 0, \quad z = h) \tag{5}$$

本研究では、密度の傾斜を考慮した物体力を受ける 傾斜機能矩形板の板厚方向に閉じた形式の解析解を導 出した.その詳細は、紙面の都合上割愛する.

キーワード 傾斜機能材料,矩形板,密度,物体力,三次元弹性論,解析解 連絡先 〒870-0152 大分市大字牧 1666 番地 大分工業高等専門学校 TEL: 097-552-7691

表-1 傾斜機能矩形厚板の変位と応力の収束性と精度比較: h/a=0.5, ρ_t/ρ_b=1

E_t / E_b	M = N	$w^* (z / h = 0)$	$w^* (z/h = 0.5)$	$w^* (z / h = 1)$	$\sigma_x^*(z/h=0)$	$\sigma_x^* (z/h=0.5)$	$\sigma_x^*(z/h=1)$
100	101	-5.467×10^{-2}	-5.951×10^{-2}	-5.967×10^{-2}	1.378×10^{-1}	7.821×10^{-1}	- 5.986
	201	-5.467×10^{-2}	-5.951×10^{-2}	-5.967×10^{-2}	1.377×10^{-1}	7.821×10^{-1}	- 5.986
	301	-5.467×10^{-2}	-5.951×10^{-2}	-5.967×10^{-2}	1.377×10^{-1}	7.821×10^{-1}	- 5.986
	FEM	-5.467×10^{-2}	-5.951×10^{-2}	-5.967×10^{-2}	1.383×10^{-1}	7.802×10^{-1}	- 5.978
1 / 100	101	- 5.967	- 5.951	- 5.467	5.986	-7.821×10^{-1}	-1.378×10^{-1}
	201	- 5.967	- 5.951	- 5.467	5.986	-7.821×10^{-1}	-1.377×10^{-1}
	301	- 5.967	- 5.951	- 5.467	5.986	-7.821×10^{-1}	-1.377×10^{-1}
	FEM	- 5.967	- 5.951	- 5.467	5.978	-7.802×10^{-1}	-1.383×10^{-1}
3	長−2 密	度の傾斜を考慮	した傾斜機能知	巨形厚板の変位と	:応力の収束性 :	$h / a = 0.5, E_t / h$	$E_{b} = 100$
ρ_t / ρ_b	M = N	$w^* \left(z / h = 0 \right)$	$w^*(z/h=0.5)$	$w^* \left(z / h = 1 \right)$	$\sigma_x^* (z / h = 0)$	$\sigma_x^* (z / h = 0.5)$	$\sigma_x^*(z/h=1)$
5	101	-1.227×10^{-1}	-1.523×10^{-1}	-1.568×10^{-1}	3.646×10^{-1}	1.876	-1.514×10
	201	-1.227×10^{-1}	-1.523×10^{-1}	-1.568×10^{-1}	3.645×10^{-1}	1.876	-1.514×10
	301	-1.227×10^{-1}	-1.523×10^{-1}	-1.568×10^{-1}	3.645×10^{-1}	1.876	-1.514×10
1/5	101	-3.056×10^{-2}	-2.846×10^{-2}	-2.778×10^{-2}	6.310×10^{-2}	3.989×10^{-1}	-2.900
	201	-3.056×10^{-2}	-2.846×10^{-2}	-2.778×10^{-2}	6.303×10^{-2}	3.989×10^{-1}	-2.900
	301	-3.056×10^{-2}	-2.846×10^{-2}	-2.778×10^{-2}	6.302×10^{-2}	3.989×10^{-1}	-2.900
1.0			1.0		1.0 -		
		$\cdots \bigtriangleup \cdots E_t / E_b = 1 / 10$) $\cdots \Delta \cdots E_t / I$	$E_b = 1 / 10$		$E_{i}/E_{i} = 1$	
0.8		$- \cdot \bullet \cdot E_t / E_b = 1 / 20$	$0.8 + \cdots + E_t/I$	$E_b = 1 / 20$ $F_c = 1 / 50$	0.8	$\cdots \cdots E_t / E_b = 10$	$\Delta - E_t / E_b = 1 / 10$
0.6		$E_t / E_b = 1 / 30$	$00 - 0.6 - \frac{1}{E_t}$	$E_b = 1 / 100$	0.6-	$- \cdot \cdot \cdot E_t / E_b = 20$	$- \Box \cdot E_t / E_b = 1 / 20$
						$E_t / E_b = 50$	$E_t / E_b = 1 / 50$
0.4 +	$E_{1}/E_{2} = 1$		- 3° 0.4		$E_{e}/E_{h} = 1$ \Im^{10} 0.4	- · · ·	
0.2	$\frac{E_l}{E_b} = 10$		0.2		$E_t / E_b = 10$ 0.2		
	$E_t / E_b = 20$				$E_t / E_b = 20$		
0.0+	$E_t / E_b = 50$ $E_t / E_b = 100$		0.0		$E_t / E_b = 30$ = 0.0 -	**************************************	
-0.2			-0.2				
0.0	0.2 0.4	0.6 0.8	1.0 0.0 0.2	2 0.4 0.6	0.8 1.0 0.	0 0.2 0.4	0.6 0.8 1
		n/a		h/a		h	a
	(a)	U_b		(b) U_s		(c)	U_z

図-4 傾斜機能矩形板の各ひずみエネルギー成分に与える板厚比と縦弾性係数比の影響

3. 理論解析および考察

ここでは、導出した解析解の収束状態と妥当性の検 証および傾斜機能板の変形特性について明らかにする. なお、変位、応力およびひずみエネルギーは、次式の ように無次元化している.

$$w^* = \frac{wE_b}{q_Z a}, \quad \sigma^*_x = \frac{\sigma_x}{q_Z}, \quad U^*_{ij} = \frac{U_{ij}E_b}{q_Z^2 a^3} \quad (i, j = x, y, z) \quad (6)$$

表-1には、密度を一定分布とした傾斜機能厚板の変 位と応力の収束性と精度比較が示してある.参照解は、 三次元有限要素解 (FEM) とした.これより、縦弾性 係数比 E_t/E_b に係わらず、解析解は級数の展開項数M=Nの増大に伴い、一定の値へ収束する.また、有限要 素解は解析解によく類似している.

表-2には、密度の傾斜を考慮した傾斜機能厚板の変 位と応力の収束性が示してある.これも密度比ρ_i / ρ_b に係わらず、解析解は級数の展開項数 *M*=*N*の増大に 伴い、一定の値へ収束する.以上より、導出した解析 解の妥当性が確認できる.

図-3には、傾斜機能矩形板の曲げ変形成分 U_b=(U_{xx}

+ U_{yy} + U_{xy}) / U, 面外せん断変形成分 $U_s = (U_{yz} + U_{yz}) / U$ および面外伸縮変形成分 $U_z = U_{zz} / U$ に与える板厚比 h/a と縦弾性係数比 E_t / E_b の影響が示してある. これ より,下面と上面の縦弾性係数を入れ替えてもひずみ エネルギー特性に与える影響は無いことがわかる.ま た,傾斜機能材料は,下面と上面の縦弾性係数の値の 差が大きくなると,等質・等方な材料 ($E_t / E_b = 1$)よ りも曲げ変形成分は増大し,面外せん断変形成分は減 少する. さらに, $h/a \ge 0.5$ なる厚板になると面外伸縮 変形成分の影響が現れてくるという特徴がある.

4. まとめ

本稿では,密度の傾斜を考慮した自重を受ける傾斜 機能矩形板の静力学的特性の一部を報告した.なお, 密度の不均質性の影響等については,当日報告する.

参考文献

1) 上村ら: 傾斜機能材料の開発と応用, pp.1-32, シー エムシー出版, 2003.