中性化による損傷を受けた RC 床板橋の安全性検討

香川高専	学生会員	○藥師	侑祐
徳島大学	非会員	安倍日	F香子
香川高専	正会員	太田	貞次

1. はじめに

RC 床版橋は施工が容易であることから,市町村が管理 する支間長 10m 程度までの小支間橋梁に多数使われてい る.しかし,これらの床版橋にはコンクリートの締固め 不足や鉄筋のかぶり不足等の施工不良が原因で中性化が 進行し,顕著な劣化損傷を呈した事例が多く見受けられ る(写真-1).これらは交通量が比較的少ないため補修補強 対策が先送りされる傾向にあり,耐荷力を診断するなど, 安全性を検証することが必要である.

本研究では顕著な劣化損傷が生じた RC 床版橋を対象 とし、実橋振動計測と有限要素解析を併用して安全性を 照査した結果について報告する.

2. 現況調査および振動計測

本研究では、損傷が顕著な屋島中学校前床版橋を検討 対象橋梁として、現況調査および振動計測を行った.また、健全な床版橋(古川6号橋)について有限要素解析の妥 当性を検証するために振動計測を実施した.

2.1 現況調査

2 つの橋梁の諸元を表-1 に、屋島中学校前床版橋の損 傷状況を写真-2 にそれぞれ示す.屋島中学校前床版橋で は、(a)地覆下の床版下面において橋軸方向に最大幅 80cm のかぶりコンクリートの剥落と鉄筋露出、(b)支承 線沿いに最大幅55cm、および主鉄筋位置より深さ25mm のコンクリート剥落が確認された.また、主鉄筋は最大 直径7mmの断面減少が見受けられ、コンクリートと内部 鉄筋との一体化が損なわれていた.

2.2 実橋振動計測

人の跳躍によって橋梁を加振し、支間中央に設置した サーボ型加速度変換器によって鉛直成分の振動加速度を 収録した.さらに、高速フーリエ変換によって振動加速 度スペクトルを算出し、卓越振動数のうち最小のものを1 次モードの固有振動数とした.図-1に、屋島中学校前床 版橋の振動加速度スペクトル図を示した.各橋梁の1次 固有振動数を表-2に示す.

	THE
(a) 浜鎌野線1号橋	(b) 屋島中学校前床版橋
(c) 新開新馬場1号橋	(d) 小山橋

写真-1 床版橋の劣化損傷事例

表-1 対象2橋梁の諸元

橋梁名	古川6号橋	屋島中学校前床版橋
管理者	高松市	高松市教育委員会
橋長[m]	9.1	5.1
幅員[m]	4.8	4.95

(b) 支承線沿い

写真-2 屋島中学校前床版橋の損傷状況(床版下面)

(a) 地覆下

橋梁	1次固有振動数 f [Hz]
古川6号橋	13.1
屋島中学校前床版橋	19.3

キーワード:床板橋,安全性照査,現地振動計測,有限要素解析 連絡先:〒761-8058 香川県高松市勅使町 355 Tel. 087-069-3925 FAX 087-869-3929

3. 解析的検討

有限要素解析ソフト ANSYS を使用して固有値解析お よび静的応力解析を行った.現況調査をもとに作成した 各橋梁の健全モデルを図-2,各要素に使用した材料物性 値を表-3 にそれぞれ示す.本解析では、コンクリート床 版を SOLID 要素,鉄筋(主鉄筋,配力筋)を BEAM 要素と して定義した.解析結果を現地振動計測結果とともに表 -4(a)に示す.各解析モデルの節点数は、それぞれ 19,917 および 14,752 である.

3.1 振動解析

健全な床版橋である古川 6 号橋を対象とした固有値解 析結果と計測結果を比較して,表-4(a)に示す.固有振動 数の誤差は2%と小さく,解析結果と計測結果の固有振動 数はほぼ一致していることから,有限要素解析モデルに よる実橋の振動を再現可能であることが確認された.

次に損傷の進行した屋島中学校前床版橋の解析結果と 計測結果を比較すると、計測値が解析値を10%下回る結 果となった(表-4(a)).これは劣化損傷に伴う剛性の低下 が原因であると考えられる.

現地調査および振動計測結果をもとに、屋島中学校前 床版橋の損傷状況を再現した.損傷部分の配力筋までの かぶりコンクリートおよび鉄筋を削除し、支点は片側の み水平変位を拘束する損傷橋梁モデルを作成して、固有 値解析を行った(表-4(a)).解析値と計測値の誤差は3% と小さく、橋梁の損傷や支点条件を反映することで、概 ね損傷橋梁を再現できることが確認された.

3.2 屋島中学校前床版橋の安全性検討

3.1 で作成した解析モデルを使用して,群集荷重を載荷 した時の安全性の照査を行った.死荷重および群集荷重 350kg/m²載荷時の曲げ応力とせん断応力の分布を図-3 に, 応力度の計算結果を表-4 (b) にそれぞれ示す.

コンクリートの曲げ応力度は許容曲げ引張応力度 4.05N/mm²に対して 1.85N/mm²となり,安全率は 2.2 であ った.このことから,かぶりコンクリート剥落や鉄筋の 剥離を生じた状態でも,曲げに対して十分に安全である ことがわかった.

せん断応力は支承線沿いのコンクリート剥落部位近 傍に集中しており,斜め引張鉄筋の計算をしない場合 の許容せん断応力度 1.0N/mm² に対して最大せん断応 力度 0.921N/mm² であった.これより,設計計算時の 1.23 倍の群集荷重が作用した場合にせん断破壊を生じ る危険性が確認された.

古川6号橋
屋島中学校前床版橋
図-2 ANSYS による解析モデル

表3	各要素の材料物性値
10 1	百女米ツ川和初川工に

部材名	弾性係数E [kN/mm²]	ポアソン比µ	密度ρ [kN/m ³]
コンクリート	28	0.3	78.5
鉄筋	200	0.2	23.0

表-4 有限要素解析による解析結果

(a) 固有値解析結果と測定結果の比較

桥汉	适测点 固有振動数 f [Hz]		密垢 体/計測体	
倘朱石		解析值	計測値	一件们102/亩⊤次1102
古川6	6号橋	12.9	13.1	0.98
屋島中前	健全	21.2	10.2	1.10
床版橋	損傷	19.9	19.3	1.03

(b) 屋島中学校前床版橋の安全性照査結果

		曲げ引張応力σ _{bt}	せん断応力T
		[N/mm ²]	[N/mm ²]
許容	応力	4.05	1.0
健全	モデル	1.43	0.364
損傷 モデル	死荷重	1.13	0.577
	群集荷重	0.72	0.344
	合計	1.85	0.921

4. まとめ

劣化損傷を生じた屋島中学校前床版橋を対象に現地 振動計測と有限要素解析を行い,以下の知見を得た. (1)床版橋の損傷状態を反映した解析モデルを使用した 有限要素解析により,実橋にて計測された固有振動数を 数値指標として,損傷橋梁の再現が可能である.

(2) 損傷モデルを使用した有限要素解析により,曲げ強度 には十分な安全性を有する.また,せん断強度について は群集荷重に対して 1.23 倍の安全性であり,支承線沿い のコンクリート剥落部位近傍におけるせん断破壊の危険 性が示唆された.