様々な形状をした破砕性粒子集合体の一次元圧縮に関する DEM 解析

筑波大学大学院	学生会員	〇上田高生
筑波大学	正会員	松島亘志
筑波大学	正会員	山田恭央

1. はじめに

破砕性粒子は一般に火山噴出物,生物遺骸,又は風化 した岩石などを主成分としており,河川の運搬・分級作 用によって丸みを帯びた堆積砂と比べて粒子形状が複雑 である.このような粒子の破砕は地盤の圧縮特性に大き な影響を及ぼすことから工学的関心が高く,これまでに も多くの実験的検討がなされてきた[e.g. 1].一方,近年, 個別要素法(DEM)を用いた粒子破砕シミュレーションに より土粒子レベルでの破砕メカニズムの解明が進んでお り[e.g. 2],本研究は破砕性粒状体の粒子形状が圧縮特性 に及ぼす影響について検討してみた.

2. シミュレーションの方法

破砕性粒子を以下の手順で作成した.1) 粒径 0.7~1.4 cmの円要素をある円形領域内にランダムに発生させ,中 心点に向かって自由落下させる.2) 安定後,無重力下で 等方圧縮し,内部応力の不均一を緩和する.3) 要素間斥 力をゼロにするような結合力を与えることで,結合され た要素ベッドを作成する.次に,要素ベッドから,表1 に示す6種類の形状の粒子を切り出し,それぞれR10,R15, R20,H10,H15,H20 と名付けた.なお,シミュレーション には Matsushima ら[3]が開発した2次元 DEM プログラム 「DEMseg」に Jiang ら[4]提案のモーメントバネを導入し て実施した.

それぞれの粒子 20 個を, 左右端を周期境界, 上下端を 板とした長方形領域(幅 70 cm, 任意高さ)内のランダム な位置に配置することで粒子形状の異なる 6 種類の破砕 性粒子の集合体を作成した.図1にそれぞれの初期状態 を示す.下板を固定し,上板に鉛直荷重(*p*)を作用させ, 粒子の挙動が安定化したら少しずつ荷重を増加させ,一 次元圧縮のシミュレーションを行った.

3. シミュレーションの結果

図 2(a) ~ (d)に *p* = 1, 7, 10, 20 N における R20 の挙動を示 す. なお,要素間に作用する圧縮力及び引張力に応じて 色づけし,粒子内部の応力分布を分かりやすくしている. 圧縮の初期段階から応力鎖が生じ初め(図 2(a)), p が大 きくなるに従って応力鎖が発達するとともに、粒子内部 に圧縮応力が円形に広がる圧縮状態(図 2(b)(i))や、粒 子の側面に圧縮荷重と引張荷重が対照的に生じる曲げ状 態(図 2(b)(ii))、及び摩耗・欠損(図 2(b)(iii))が観測さ れた. p=10Nでは、先ほど観測された圧縮状態、曲げ状 態について、それぞれ割裂破砕、曲げ破砕が生じており

(図 2(c)), p = 20 N では、多数の粒子が破砕するととも に大きな体積圧縮が生じた(図 2(d)).このように粒子同 士の相互作用によって、摩耗・欠損、曲げ破壊、割裂破 壊の3種類の破壊形態が生じることが分かった.図3に 全圧縮過程を通じて観測された破壊形態をまとめて示す. 丸みを帯びた形状の R10~20 では割裂破壊が支配的だっ たのに対して、角張った形状の H10~20 では摩耗・欠損 が多く観測され、曲げ破壊は R15,20 でのみ観測された. 粒子形状によって破砕発生数は概ね変わらないが、破壊 形態は大きく異なることが分かった.

図4に間隙比(e)とpの関係を示すが、ここに*印は離 散要素のパッキング、すなわち本シミュレーション条件 での最小間隙比を示している。各ケースで破壊形態は大 きく異なるにも拘らず、十分に大きな圧縮圧力下では、 全てのケースの間隙比はほぼ同じ値になった。また、粒 径、配位数についてもほぼ同じ分布に収束したことから、 限界粒度に達したと考えられる。

4. まとめ

様々な粒子形状を持つ破砕性粒状体の1次元圧縮シミ ユレーションを行ったところ,以下の知見を得た. 1) 圧縮の過程で摩耗・欠損,曲げ破壊,割裂破壊の3種 類の破砕が発生し,それぞれの割合は形状によって決ま る.

2) 粒子形状によって破壊形態が異なるにも拘らず,十分 に大きな圧縮圧力下では,一定の間隙比,粒径・配位数 分布を持つ限界粒度に収束した.

個別要素法 (DEM), 粒子破砕, 一次元圧縮

連絡先(茨城県つくば市天王台 1-1-1, 029-853-5138)

参考文献 [1]Terzaghi, K. and Peck, R. B., Soil mechanics in engineering practice, John Wiley & Sons, Inc., New York, N.Y., 1948. [2]Nakata, Y., Hyodo, M. and Murata, H., Proc. Int. Sym. Geomech. Geotech. Part., 261-266, 2006. [3]Matsushima, T., Saomoto, H., Tsubokawa, Y., Yamada, Y., S&F, 43(4), 95-106, 2003. [4]Jiang, M.J., Yu, H.-S. and Harris, D., Computers Geotech., 32, 340-357, 2005.

表1 各サンプルの形状データ

サンプ	長軸	短軸	アス	概形	要素数
ル名	(cm)	(cm)	ペク		
			卜比		
R10	19.8	19.3	1.0	円	335
R15	25.2	17.4	1.4	楕円	373
R20	28.7	14.7	2.0	楕円	369
H10	22.1	20.5	1.1	正六角形	370
H15	24.3	17.4	1.4	六角形	373
H20	28.7	14.9	1.9	六角形	373

図1 各サンプルの初期状態

図 2 R20の一次元圧縮シミュレーション. 圧縮圧力 (p)はそれぞれ, (a) 1 N, (b) 7 N, (c) 10 N, (d) 20 N.

図3 圧縮シミュレーションで観測された破壊形態

図4 圧縮曲線