パシフィックコンサルタンツ(株) 正会員 〇池端 文哉 首都圏新都市鉄道(株) 新海 守一 岩本 博 (独)鉄道・運輸機構 正会員 三井 英夫 正会員 西 恭彦 正会員 森野 達也

1. はじめに

2011年の東北地方太平洋沖地震によって,つくば エクスプレス線の利根川東高架橋の一部の杭基礎橋 脚が傾斜し,軌道面で最大150mm程度(水平方向), 80mm程度(鉛直方向)の残留変位が生じた(**表-1**).

地震後の健全度調査等の結果,大きな部材損傷は 生じていなかった.しかしながら,今後,同規模以 上の地震力が作用した場合,更なる残留変位の増加 が懸念された.このため,動的解析により構造物変 位の再現解析と増し杭による補強の効果を検証した.

2. 解析条件

(1)入力波 入力地震波は、当該箇所から最近傍で観 測されたハザマ技術研究所観測波(基盤波)を用いた (図-2).ただし、同観測波は GL-100m の基盤で観

測されており、当該柱状図(25P付近)との深度差 があるため、あらかじめ、ハザマ技研柱状図に対し て1次元の応答解析を実施し、当該柱状図No3の基 盤面深度における応答波を抽出して解析モデル基盤 への入力波とした.また、鉄道の耐震標準¹⁾のL2地 震波(スペクトルII)も使用した(図-3).

(2) 解析モデル 図-1 に解析モデルを示す.

解析には、土柱モデルを用い、構造物を構成する 各部材、地盤ばねともに非線形要素とした.土柱モ デルの G/G_{max} -y 関係は鉄道総研式¹⁾を、h-y 関係は 安田・山ロモデル²⁾を用いた. 杭の支持力特性は、 新基礎標準³⁾により設定した. なお、既設場所打ち 杭の先端ばねは、杭の押込み載荷試験の実績⁴⁾を踏 まえて、除荷、再載荷勾配を初期勾配 K_{tv} の 10 倍と した.

(3) 解析ケース 表-2 に解析ケースの一覧を示す.

回転圧入鋼管杭による増し杭補強(図-4)の効果 を確認するため,補強前後に対する解析を実施した.

また, 杭先端支持状況のバラツキを考慮して N 値 =30, 50 と左右の支持状況が異なる場合を想定した.

表-1 地震による残留変位量

		X DA DO TAN							
	橋脚番号	軌道面水平変位量 (mm)	橋脚沈下量 (mm)						
1	22P	+1	0						
	23P	+9	50						
l	24P	-132	80						
	25P	-151	50						
	1P	-17	0						

注)軌道面水平変位量の+は上り線方向,・は下り線方向への 変位を表す.

表-2 解析ケース一覧

入力地震動	補強 前後	既設RC杭の 先端支持の状況	解析 ケース
いボー	補強前	左右とも N 値=40	CASE 01
バリマ	補強後	左右とも N 値=40	CASE 02
1又刑切九月 組測其般波	補強前	N 値=50,N 値=30	CASE 03
戰則至盈似	補強後	N 値=50,N 値=30	CASE 04
	補強前	左右とも N 値=40	CASE 05
耐震標準	補強後	左右とも N 値=40	CASE 06
L2(Sp II)	補強前	N 値=50,N 値=30	CASE 07
	補強後	N 値=50,N 値=30	CASE 08

キーワード 東日本大震災, つくばエクスプレス線, 杭基礎橋脚, 時刻歴応答解析, 耐震補強 連絡先 〒163-6018 東京都新宿区西新宿 6-8-1 パシフィックコンサルタンツ(株) 交通基盤事業本部 鉄道部 TEL03-5989-8334

3. 解析結果および得られた知見

代表例として CASE 03,08 の時刻歴応答を図-5,6 に示す.また,表-3 には解析結果一覧を示す.

(1)ハザマ技術研究所の観測波を用いた場合

解析の結果, CASE 03 において, R.L 位置の残留 変位が水平方向 108mm, 鉛直方向-56mm となり, 最 も実際に近い値となった(図-5). このことから, 杭 先端の支持状況にバラツキを有しているものと考え られる. 更に, 表-3 より, 基礎中心残留傾斜角×h (R.L ~基礎中心)の値は 101mm となり, 水平方向の残留 変位にほぼ一致することから, 残留変位の主たる原 因は基礎以下の回転によるもの考えられる.

(2) 耐震標準 L2(Sp II) を用いた場合

CASE 08の結果より、補強前は杭の損傷レベルが3 に達するが、補強後は損傷レベル2に留まり、所要の 耐震性能Ⅱを確保する(表-3).また、補強後の残留

変位は水平方向36mm,鉛直方向-4mmと僅少であり, 最大規模の地震動に対しても補強の効果が確認された(図-6).

参考文献

- 1) 鉄道構造物等設計標準·同解説 耐震設計,1999.
- 安田進、山口勇:種々の不撹乱土における動的変形特性 に関する実験的研究(II)、土木研究所報告 153 号の 2,1980.
- 3) 鉄道構造物等設計標準·同解説 基礎構造物,2012.
- 4) 地盤工学会:杭の鉛直交番載荷試験方法・同解説-第1
 回改定版 -第5編 杭の鉛直交番載荷試験,2002.5.

表─3 解析結果数値一覧												
		CASE01	CASE 02	CASE 03	CASE 04	CASE 05	CASE 06	CASE 07	CASE 08			
		ハザマ技術研究所基盤波			耐震標準基盤波(L2 SpⅡ)							
		補強前	補強後	補強前	補強後	補強前	補強後	補強前	補強後			
R.L 位置 最大応答加速度	(gal)	175	193	174	193	465	569	475	569			
〃 水平方向最大応答変位	拉 (mm)	140	116	215	116	904	619	976	619			
〃 水平方向残留変位	(mm)	34	11	<u>108</u>	<u>11</u>	80	36	<u>182</u>	<u>36</u>			
基礎中心残留傾斜角×h (=21.99m)		33	2	101	2	65	36	159	36			
〃 鉛直方向最大応答変位	拉 (mm)	-50	-1	-56	-1	-88	-4	-90	-4			
〃 鉛直方向残留変位	(mm)	-50	0	<u>-56</u>	<u>-0</u>	-88	-4	<u>-90</u>	-4			
基礎中心残留傾斜角	(mmrad)	1.52	0.08	4.61	0.08	2.97	0.16	7.23	0.16			
	脚柱	1	1	1	1	1	2	1	2			
部材の損傷レベル	既設 RC 杭	1	1	1	1	3	<u>2</u>	3	2			
	新設鋼管杭		1		1		1		1			