地中ボックスカルバート中壁のせん断破壊後の軸力保持機能の検討

東北電力(株)	正会員	○坂本	克洋	伊達	政直
(株)大林組	正会員	伊奈	啓輔	田中	浩一

1. はじめに

地中構造物の要求性能が、導水管カルバートに代 表される「通水機能の確保」である場合、頂版自重 と土被荷重による軸力を保持する機能が確保される ことが重要となる。

構造物の中壁および両側壁がせん断破壊したとし ても、軸力保持機能が残存すると判断できる場合は、 限界変位(カルバートの場合、頂版と基礎版の層間変 位の限界値)を合理的に設定できる可能性がある。

本報告では、中壁のせん断破壊が先行する2連ボ ックスカルバート(図-1)を対象として、解析による 構造物全体の崩壊モードを確認するとともに、中壁 1/2 スケールモデルによるせん断破壊後の軸力保持 機能ついての実験結果を示す。

2. 解析による破壊モードの確認

土被り厚さ約 20m の 2 連ボックスカルバートにお いて、変位制御による交番載荷解析を実施し、構造 物全体の崩壊モードの再現性を確認した。中壁の荷 重~変位関係(図-2)では、交番載荷解析に加えて単 調載荷解析の結果を載せており、中壁がせん断破壊 発生するときの水平変位は両者で概ね一致している。

全壁の中で最初に中壁がせん断破壊(図-3)した後、 塑性化による伸び上がりにより、中壁の軸力が増加 する(図-4)。各壁には常時で 0.15f_{ck} 程度の軸力が 作用しており、中壁はせん断破壊後にその軸力を一 旦は保持した後、その後の交番載荷により塑性化が 進み、軸力増加に耐えきれず中壁の崩壊に至ってい る。最終的に、構造物全体の非線形化が急激に進ん で、各壁の軸力が増加し、頂版の崩壊に至っている。

3. 実験概要

2 連ボックスカルバートの中壁 1/2 スケールモデ ルによる、変位制御載荷による、軸力保持機能を確 認するための実験を2軸試験機にて実施した(図-5)。

キーワード 電力施設,地中構造物,変位制御,せん断破壊,軸力保持
 連絡先 〒980-8550 仙台市青葉区本町 1-7-1 TEL 022-799-6103 FAX 022-262-5851

(1)試験体:2連カルバートの中壁1/2スケール
(寸法:壁高1.65m×厚さ0.5m×奥行き1.0m)
(2)試験ケース:3ケース

表-1 解析ケース(パラメータ:せん断補強鉄筋比)

実験ケース	せん断補強鉄筋比
PWOO	なし
PW01	0.10%
PW02	0.23%

(3)載荷方法:2軸試験機により軸力0.05f_{ck}を導入 し、せん断破壊する前まで層間変形角1/2000間隔 で交番載荷した後、せん断破壊直後の急激な変形 を避けるため、変位制御の単調載荷に変更した。 せん断破壊(付着破壊)後は、せん断耐力の低下ま たは層間変形角+20/1000(=2.0%)を与えた後、水平 変位を元に戻し、頭部の回転を拘束した状態で残 留軸力の載荷試験を実施した。

4. 実験結果

実験結果を表-2 と表-3 に、荷重-変位関係を図-6 に示す。

(1)破壊(せん断破壊、付着割裂破壊)時の状況

表-2 実験結果(破壊時の状況)

実験 ケース	せん断補強 鉄筋比	破壞 形態	破壊時 の変形角	最大 水平荷重 (a)	ピーク後 水平荷重 (b)	ピーク後の 耐力低下率 (a-b)/a
PW00	なし	せん断破壊	20/2000	842kN	263kN	0.69
PW01	0.10%	付着割裂 破壊	27/2000	1, 023 kN	950kN	0.07
PW02	0.23%	せん断破壊	28/2000	1,061 kN	88.8kN	0.16

せん断補強鉄筋がないケース(PWO0)では、脆性的 にせん断破壊を起こして大きく耐力が低下した。せ ん断補強鉄筋があるケース(PWO2)では、せん断破壊 後にある程度耐力が低下するが、層間変形角2.0%時 にも水平耐力を保持した。付着割裂破壊したケース (PWO1)の耐力低下率は、せん断破壊の場合よりも小 さく、同様に水平耐力を保持した。

(2) 軸力保持機能

表-3 実験結果(軸力保持機能)

実験 ケース	せん断補強 鉄筋比	最大 軸力	コンクリート 圧縮強度(c)	最大応力 (d)	比率 (d/c)
PW00	なし	2,195kN	29.4 N/mm^2	4.4 N/mm ²	0.15
PW01	0.10%	5,494kN	30.4 N/mm^2	11.0 N/mm^2	0.36
PW02	0.23%	4,091kN	28.8 N/mm ²	8.2 N/mm ²	0.28

せん断破壊したケース(PW00、PW02)では、軸力-鉛直変位関係が同傾向を示した。PW00でコンクリー ト強度の15%、PW02で同28%までの軸力保持能力が あり、せん断補強鉄筋によって軸力保持能力は向上 する。付着割裂破壊したケース(PW01)は、試験機の 能力限界まで載荷を行った結果であり、試験体の残 留軸力の最大値は確認できていない。

5. まとめ

軸力レベルの比較的小さい壁構造では、せん断補 強鉄筋がなく、せん断破壊後に層間変形角1.0%以上 が生じたとしても、一定の軸力保持能力があること が分かった。さらに、せん断補強鉄筋によって軸力 保持能力が向上することが確認できた。付着割裂破 壊が起こると水平せん断耐力は減少するものの、軸 力保持に必要な主筋より内側の躯体内部のコンクリ ートが残存するため、軸力保持機能が大きくなるこ とが分かった。

6. 今後の展開

今後、軸力の大きいケースの追加実験を実施する とともに、解析によりせん断破壊後の軸力保持機能 について追従できるように、解析精度を高める検討 を行う予定である。

参考文献

 1) 土木学会原子力土木委員会,「原子力発電所屋外重要土木 構造物の構造健全性評価に関するガイドライン」,2008/7
 2) 大内,伊達,「ポストピーク領域を考慮したカルバートの 地震時限界変位」2010/9,土木学会第65回年次学術講演会