富雄	○友田	正会員	日本工営
陽三	藤野	フェロー会員	東京大学
弘	勝地	正会員	横浜国立大学
英紀	高橋	正会員	港湾空港技術研究所 (前・国土交通省関東地方整備局)
明仙	上村	非会員	国土交通省東北地方整備局 (前・国土交通省関東地方整備局)
知範	川部	非会員	日本工営
靖晃	伊藤	正会員	大崎総合研究所

1. 概要

臨港地域に計画される斜張橋に歩道を設置する際,路下への投下防止や歩行者の路外逸脱防止の目的から落 下物防止柵が設置されるが,これにより橋梁の耐風安定性が低下することが懸念される.さらに,現地の制約 条件により主塔高が低い場合にはケーブル配置も桁周辺で密となる.そこで本研究では,低主塔斜張橋の主桁 部分模型を用いた風洞実験を行い,ケーブル及び落下物防止柵による影響について検討を行った.また,落下 物防止柵の設置範囲による影響については,弾性模型を用いた全橋模型風洞実験により別途検証を行った.

2. 主桁部分模型実験

本研究では、図1及び表1に示す低主塔斜張橋(両側2車線, 片側歩道,中央分離帯あり)を対象に、図中に示す箇所におけ るケーブル・落下物防止柵をモデル化(縮尺:1/70)した. な お、ケーブルの模型化範囲は既往の実験結果¹⁾を参考に、桁 高と同等程度(3m)までと設定した.フェアリングは長大橋梁 の実績を勘案した形状(図 2)を基本とし、耐風性能を向上さ せる案として角度調整用の付加部材を別途製作した.

また,落下物防止柵は充実率を 30%程度と設定し,高さや 配置を変更したケースで3種類(図3)とし,その他の防護柵 及び地覆等についても併せて模型化を行った.

風洞実験は、横浜国立大学の都市大気環境シミュレータ風 洞(測定部高さ1.8m,幅1.8m)にて実施した.気流は一様流と し、風向の定義は歩道風上側を"南風"と定義した.また、 風洞風速の確認はピトー管による微差圧計測結果を基に実橋 換算するものとし、応答変位はレーザー変位計を用いて非接 触にて計測を行った.

模型の状況は図4の通りであり,模型の相似条件(たわみ及 びねじれ剛性,減衰等)は模型を支持するバネ剛性及び電磁 ダンパーにて調整を行い,実験を行った.

3. ケーブル及び落下物防止柵の影響について

ねじれ最大片振幅と風速(実橋換算)の関係を図5に示す. ケーブルや落下物防止柵の有無に関わらず渦励振は確認され ていないものの、ねじれ発散振動についてはケーブル及び落 下物防止柵の影響により発現風速が低くなる傾向が見られた. 影響の度合いは落下物防止柵を設置した場合が最も大きく、 ケーブルについては模型化したケーブル本数の多い支間 L/4 部の方が大きくなる傾向を示した.また落下物防止柵を設置

図1:ケーブルの模型化範囲 表1:主な構造諸元(モデル橋)

項目	諸元
橋長(中央支間長)	1,035m (575m)
主塔高	95.5m
桁幅/桁高 (B/D)	8.67
設計風速/粗度区分	52.0m/s/ I

図4:模型の状況(主桁部分模型)

キーワード 低主塔斜張橋,主桁,渦励振,発散振動 連絡先 〒102-0083 東京都千代田区麹町4丁目2番地 TEL:03-3238-8347

した場合,フラッター照査風速(Urf =69.3m/s)に対して発散振動の発現 風速が近く,十分な耐風安定性を有 しているとは言えない. このため, フェアリング形状を変更(角度調整 タイプに変更)し、耐風安定性の向 21.0 上を図ることとした.

次に,落下物防止柵の種類による 検討結果(ケーブル:支間 L/4 部, フェアリング:角度調整タイプ)を 図6に示す.フェアリング形状変更

による耐風安定性の向上は見られるが、落下物防止柵による影響は設置高さが最も低い"H=2.0m,内側配置" を除く2案では発散振動の発現風速がやや低く,十分な耐風安定性を有しているとは言えないことが分かった.

4. 全橋模型実験

前項の検討結果より,橋梁の断面形状を"フェアリング角度調整タイプ+落下物防止柵 H=2.0m,内側配置" と設定し、弾性模型を用いた全橋模型実験(縮尺:1/150)にて落下物防止柵の設置範囲を変更し、設置範囲に よる耐風安定性への影響を検証した.検討対象とした落下物防止柵の設置範囲を図7に示す.

風洞実験は東京大学の全径間 風洞(測定部高さ1.9m,幅16.0m) にて実施した.気流は一様流及び 乱流(乱れ強さ 11.0%相当)とし, 風向定義は主桁部分模型と同様 とした.模型の状況を図8に示す.

5. 落下物防止柵の設置範囲による影響

支間中央部における主桁の鉛直たわみ 最大片振幅と風速(実橋換算)の関係を図 9 に示す. 落下物防止柵の設置範囲による影 響は小さく,一様流及び乱流共に所定の耐 風性能を満足することから,設置範囲によ る制約はないと考えられる.ただし、主桁 部分模型では確認されなかった渦励振(風

速 8~9m/s, 片振幅 400mm 程度)が全橋模型では確認されている一方, 前項で示したねじれ発散振動(風速 70m/s 以上)は全橋模型では確認さ れなかった. 渦励振については、構造本体への影響等は生じないと考え られるものの,発生頻度が高い風速域内の現象であることから,現象の 実橋たわみ 差異について今後さらに検証を行うことが望ましい.

6. 結論

- ・低主塔斜張橋では、ケーブルによる耐風性能の低下が確認された。
- ・
 落下物防止柵の設置範囲による影響は、本モデル橋では生じなかった。
- ・ 主桁部分模型と全橋模型の差異については、今後検証する予定である。
- 参考文献:1) "明石海峡大橋の全橋模型試験",日本風工学会誌 68 号,

pp. 25-36, 1996

図7: 落下物防止柵の設置範囲及び風向

図8:模型の状況(全橋模型, 主桁部)

-360