橋梁製作における溶接継手部のシャルピー衝撃値特性

横河住金ブリッジ 正会員 松野正見 鉄道・運輸機構 正会員 南 邦明 大阪市立大学大学院 正会員 山口隆司

1. はじめに

別報1)では、橋梁製作における溶接継手部の引張強度特性を明らかにした.本報告は、別報に続き、溶接継手部のシャルピー衝撃特性を明らかにすることとした.なお、調査概要については、別報を参照されたい.

2. シャルピー衝撃試験

溶接継手の衝撃試験は、JIS Z2242の「金属材料シャルピー衝撃試験方法」に従って実施された。試験温度は、490材では-0℃、570材では-5℃で実施され、溶接部位毎に3本のシャルピー衝撃試験を行っていた。試験片の採取位置は、板厚(t)の1/4、1/2、3/4、表面から2mmおよび裏面から2mmと様々な位置から採取されたデータであった。また、溶接線直角方向の採取位置は、溶接金属部(Depo)では中心位置に、鋼材熱影響部(HAZ)では、溶接境界線(Bond)から1mm離れた位置に、2mmVノッチを入れたデータである。衝撃試験片の試験体数量の詳細は、各試験結果に示しているが、Depo部で671体、HAZ部で594体のデータを分析した。

3. シャルピー衝撃試験結果

(1) 鋼材熱影響部(HAZ部)の衝撃試験結果

表-1にはシャルピー衝撃値の集計結果を示し、図-1には、SM570のHAZ部のシャルピー衝撃試験結果を示す.シャルピー衝撃値は、鋼種により多少の差異が見られるが、SM490Yを除けば、平均値は200Jを超える衝撃特性であった。SM490Yにおいて、SM490YAは衝撃値の基準値を規定していないが、平均値では99Jであった。50Jを下回るデータは3データしかなく、また、B規格材の規定値である27Jを下回る結果も1データであった。次に、SM490YBとSM520Cを比較すると、約30J程度後者の方が高く、両者ともに基準値(27or47J)を下回るデータは見られなかった。一方、SMA490Wは、Ni鋼の一部のデータを除き100Jを超え、最大値は300Jを超えるデータもあった。SM570において、SM570-TMCの板厚が厚い試験片では、基準値(47J)を満足しないデータもあったが、JISではばらつきを考慮し、3つの試験片の平均値で衝撃特性の評価を行う結果、いずれも基準値を超えた。なお、SM570Q、SM570-TMCおよびBHS500を比較すると、平均値では若干BHS500は高いが、大きな違いではなかった。一方、SMA570Wにおいては、SMA570W、SMA570W-TMCおよびNi鋼を比較すると、SMA570W-TMCの平均値が高く、最小値においても100Jを超えていた。

以上のように、衝撃値の平均値は160J(SM490YAを除く)を超え、鋼材熱影響部は高い衝撃値を有していると言える.

(2) 衝撃特性の変化値の集計結果

表-2は、母材の衝撃値と溶接後の衝撃値を差し引いて求めた溶接による衝撃値の変化値(一は低下値、+は上昇値)を集計したものである。溶接によって衝撃値が上昇するケースは少なく、多くのデータで低下した。また、その変化値にはばらつきがあり、平均値で $30\sim120$ Jと鋼材によっても大きく異なった。SM570QおよびSMA570Wでは、250Jを超える低下も見られた。

(3) 溶接金属部 (Depo部) の衝撃試験結果

SM570の溶接金属部のシャルピー衝撃試験結果を図-2に、集計結果を表-3にそれぞれ示す.これらの結果が示すように、いずれの溶接材料においても溶接金属部の衝撃値は、鋼材熱影響部より低い結果となった. SM490Yにおいては、40Jを下回るデータも多く見られ、ソリッドでは、平均値が100Jを超えたものの、フラックスでは62J、SAWでは43Jと基準値(27J)に近い衝撃値であった. さらに、最小値においては、フラックスおよびSAWでは、28Jと基準値を満足するものの低い値であった.一方、SMA490Wでは、逆にSAWのみ平均値が100Jを超えるが、ソリッドやフラックスでは100Jを下回り、特にフラックスではSM490Yとほぼ同等の67J程度であった.

SM570においては、フラックスで基準値(47J)を下回るデータが1データあったが、各溶接材料の平均値は84~104Jであった。また、フラックスでは衝撃値が140Jを超える高いデータも見られるが、これらのデータはシールドガスにアルゴンと炭酸ガスの混合ガスを用いた結果であった。一方、SMA570Wの溶接金属部においては、個々の試験片ではJIS基準値(47J)を満足しない場合も複数のデータで見られた。ただし、3個の平均値では何れの試験結果も47Jは超えていた。ソリッドにおいて、平均値では87Jであったが、フラックスやSAWでは70J程度と低かった。ただし、フラックスでは、平均値は71Jであった。

以上のように、溶接金属部の衝撃値は低く、鋼材と溶接材料の衝撃値に大きな隔たりが見られた.

キーワード:溶接継手、シャルピー衝撃値、溶接施工試験

連絡先: 550-0004 大阪市西区靭本町1-4-12 横河住金ブリッジ TEL06-7637-1013 231-8315 横浜市中区本町6-50-1 鉄道・運輸機構 TEL 045-222-9082

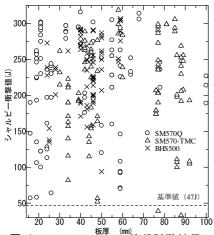


図-1 SM570のHAZの衝撃試験結果

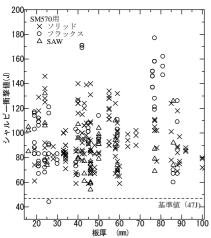


図-2 SM570のDepoの衝撃試験結果

(4) DepoとHAZとの衝撃値比率

衝撃値比率の集計結果を表-4に 示す. ここでは, 各溶接試験およ び各部位(Depo,HAZ)ごと行われる 衝撃試験片3個の平均値データを用 いて、DepoをHAZで除して求めた 比率(Depo/HAZ)である. 表-4に示 すように、HAZ衝撃値に対する Depo衝撃値は低くいことがわかる.

表-1 鋼材熱影響部 (HAZ) のシャルピー衝撃試験データの集計

鋼材規格	試験 数量	最小値	衝撃値(J 最大値) 平均値	標準 偏差	変動 係数	鋼材規格	試験 数量	最小値	衝撃値(J 最大値) 平均値	標準 偏差	変動 係数
SM490YA	21	25	223	98.9	57.053	0.577	SMA490BW	21	110	365	229.0	76.229	0.333
SM490YB	81	63	320	161.1	60.505	0.376	SMA490CW	12	131	303	226.4	54.376	0.240
SM520C	24	85	307	193.8	62.147	0.321	Ni高耐候性鋼	24	82	294	227.5	69.375	0.305
鋼材規格	試験 数量	最小値	衝撃値(J 最大値		標準 偏差	変動 係数	鋼材規格	試験 数量	最小値	衝撃値(J 最大値	<u> </u>	標準 偏差	変動 係数
SM570Q	96	57	339	221.8	73.102	0.330	SMA570WQ	72	57	313	202.3	67.554	0.334
	99	33	345	219.5	66.627	0.304	SMA570W-TMC	18	103	305	232.8	52.579	0.226
SM570-TMC	99	33	545	217.0									

表-2 鋼材熱影響部 (HAZ) のシャルピー衝撃変化値データの集計

鋼材規格	試験 数量	衝撃 上昇の 最大値	値変化 低下の 最大値	値(J) 平均値	標準 偏差	変動 係数		鋼材規格	試験 数量	衝撃 上昇の 最大値	値変化 低下の 最大値		標準偏差	変動係数
SM490YA	21	-	-	-		ı		SMA490BW	21	51	-199	-75.1	73.676	0.981
SM490YB	81	66	-232	-99.3	71.856	0.724		SMA490CW	12	37	-161	-68.6	65.148	0.950
SM520C	24	125	-209	-30.4	93.235	3.067		Ni高耐候性鋼	24	37	-265	-104.3	78.188	0.750
鋼材規格	試験 数量	上昇の	値変化 低下の 最大値	値(J) 平均値	標準 偏差	変動係数		鋼材規格	試験 数量	衝撃 上昇の 最大値	値変化 低下の 最大値		標準偏差	変動係数
SM570Q	96	64	-286	-82.7	75.016	0.907		SMA570WQ	72	-	-268	-120.1	65.714	0.547
SM570-TMC	99	103	-308	-71.2	77.529	1.089		SMA570W-TMC	18	-	-193	-90.6	43.271	0.478
BHS500	78	94	-167	-40.1	52,974	1.321	T	Ni高耐候性鋼	48	14	-203	-89.0	58,468	0.657

表-	-3 ¥	容接金	(属部	(Det	o) 0	シャ	ル	ピー衝撃討	代験ラ	ニータ	の集	計		
SM490Y用	試験	î	衝撃値(J)	標準	変動		SMA490W用	試験	1	衝撃値(J)	標準	変動
溶接材料種別	数量	最小値	最大値	平均值	偏差	係数		溶接材料種別	数量	最小値	最大值	平均值	偏差	係数
ソリッド	66	34	194	120.2	46.181	0.384		ソリッド	12	75	110	90.2	12.104	0.134
フラックス入り	42	28	129	62.1	24.983	0.402		フラックス入り	18	45	129	66.6	18.919	0.284
SAW	18	28	65	43.4	11.703	0.270		SAW	15	61	166	104.5	32.839	0.314
SM570用	試験		衝撃値(J		標準	変動係数		SMA570W用	試験		衝撃値(標準	変動
溶接材料種別	数量	最小値		平均値	偏差			溶接材料種別	数量	最小値	最大値	平均値	偏差	係数
ソリッド	156	59	146	93.6	19.943	0.213		ソリッド	69	42	152	86.5	26.600	0.308
フラックス入り	78	44	177	104.4	30.782	0.295		フラックス入り	24	36	114	71.1	25.123	0.353
SAW	48	54	132	84.0	17.194	0.205		SAW	21	51	95	72.0	13.666	0.190
Ni鋼(490)	試験	í	衝撃値(J)	標準	変動		Ni鋼(570)	試験	衝撃値		T)	標準	変動
溶接材料種別	数量	最小值	最大値	平均值	偏差	係数		溶接材料種別	数量	最小值	最大値	平均值	偏差	係数
ソリッド	3	63	88	73.3	13.051	0.178		ソリッド	18	162	211	185.1	15.086	0.082
フラックス入り	9	39	180	104.0	54.415	0.523		フラックス入り	39	42	114	69.2	19.324	0.279
SAW	12	61	142	91.3	27.880	0.305		SAW	15	28	162	108.6	44.468	0.409

表-4 溶接金属部と鋼材熱影響部との衝撃値比率(Depo/HAZ)の集計

鋼材規格	試験 数量		比(Dep	o/HAZ) 平均値	標準偏差	変動 係数	鋼材規格	試験 数量		比(Dep 最大値	o/HAZ) 平均値	標準偏差	変動 係数
SM490YA	7	0.1801	1.3390	0.7086	0.3557	0.502	SMA490BW	7	0.2071	0.5271	0.3583	0.1123	0.313
SM490YB	27	0.1818	1.9170	0.6276	0.3775	0.601	SMA490CW	4	0.2609	0.5414	0.4228	0.1177	0.278
SM520C	8	0.3239	1.0332	0.6434	0.2439	0.379	Ni高耐候性鋼	8	0.2505	0.5631	0.4057	0.1034	0.255
鋼材規格	試験 数量	衝撃値 最小値	比(Depo		標準 偏差	変動 係数	鋼材規格	試験 数量	衝撃値 最小値	比(Depo		標準 偏差	変動 係数
鋼材規格 SM570Q		最小値	最大値	平均値			鋼材規格 SMA570WQ	数量	最小値	最大値	平均値		
	数量	最小値 0.2780	最大値 0.8843	平均値 0.4733	偏差	係数		数量 24	最小値 0.1843	最大値 0.8358	平均値 0.4405	偏差	係数
SM570Q	数量 32 33	最小値 0.2780 0.2611	最大値 0.8843	平均値 0.4733 0.4844	偏差 0.1691	係数 0.357	SMA570WQ	数量 24 6	最小値 0.1843 0.2486	最大値 0.8358 0.4582	平均値 0.4405 0.3440	偏差 0.1896	係数 0.430

各鋼種を比較すると、SM490Yが最もその比率が高いが、それでも $0.60\sim0.70$ 程度であり、その他の鋼種では0.35 ~ 0.48 であった. 一方, SMA490Wでは, 最大でも0.56と低く, 比率の高い領域のデータは見られなかった. SM570において、SM570QおよびSM570-TMCよりBHS500の方が比率は低かった.

4. まとめ

橋梁製作で使用する鋼材および溶接材料を用いた場合のシャルピー衝撃特性をまとめると、以下の通りである.

- ・鋼材熱影響部(HAZ部)の衝撃値は、基準値に対し遥かに高い衝撃特性を有し、SM490Yはその他の鋼材より若干 低かった(SM490YBは161J, SM520は194J)が、SM490Y以外の鋼材では平均値で210~230J程度であった.
- ・溶接金属部(Depo部)の衝撃値は、JIS判定方法である3個の平均値では、基準値を満足するものの、基準値ぎりぎ りの結果や、個々の試験片では基準値を下回るケースも見られた、衝撃値の平均値は、60~110J程度であり、 溶接材料種別により異なっていた.
- ・溶接金属部(Depo)と鋼材熱影響部(HAZ)の衝撃値比率は, 0.35~0.48程度(SM490Yのみ0.60~0.70)であった. なお,本報告は,土木学会鋼構造委員会「鋼構造物の連結に関する検討小委員会:(委員長:山口隆司)」の 活動の一環で行ったものである.

[参考文献]

金澤宏明, 南 邦明, 山口隆司:橋梁製作における溶接継手部の引張強度特性,土木学会第67回年次講演会I, 2012.9.