流れ場に基づいた斜張橋ケーブルのギャロッピングに関する研究

京都大学工学研究科	学生員	○新庄	皓平
㈱新日鉄都市開発		岡本	健吾」

京都大学工学研究科	正会員	八木	知己
京都大学工学研究科	正会員	白土	博通
	1)研究当時京都	叙大学ナ	マ学院

1. はじめに

斜張橋ケーブルにおいて,降雨のない状態で発生す るドライステート・ギャロッピングの発現について、 Matsumoto¹⁾はカルマン渦の抑制が関係している可能性 を指摘している. 例えば, 傾斜ケーブル背後に形成さ れる軸方向流れや,臨界レイノルズ数域において,カ ルマン渦放出が抑制され, ギャロッピングが発生する と考えられる.しかし、未解明な点も多く、流れ場か らより詳細に検討する必要があると思われる.本研究 では, 臨界レイノルズ数領域での実験を行う目的で, 表面形状の異なるケーブル模型を用いて, PIV 解析によ り、ギャロッピングのメカニズムの解明を試みた.

2. 傾斜ケーブルの空力特性²⁾

Fig.1 に示すように, 直径 D=50[mm]のアルミニウム 円柱の円断面ケーブル模型,並びに高さ3.5[mm]の凹凸 表面のゴムシートを貼り付けた縞状突起付きケーブル 模型を用いた.模型姿勢は鉛直面内傾斜角 a=0°,水平 面内傾斜角β=45°とし,抗力係数 Cn及び非定常空気力 係数 H_1^{*3} の計測を行った.非定常空気力係数 H_1^{*} は, 鉛直振動方向の空力減衰に対応し,正の値が負減衰, 即ち空力的に不安定でギャロッピングが発生すること を示す.

円断面模型

Fig.1 ケーブル模型

非定常空気力測定実験では、無次元風速を変化させ る目的で, 強制加振周波数を f=1.4[Hz], 2.0[Hz]の2種 類で行い,また,強制加振振幅を2n=20[mm]とした.静 止時の抗力係数 C_D を Fig.2 に、非定常空気力係数 H_1^* を Fig.3 に示す. これらより, 円断面模型ではギャロッ ピングに対して,安定であったが, 縞状突起付き模型

では不安定となった.また,縞 状突起付き模型は発現風速が 無次元風速に支配されている が, 抗力係数 C_D が減少する臨 界レイノルズ数領域でギャロ ッピングに対して大きく不安 定化していることがわかる.

3. 流れの可視化実験

本研究では、ギャロッピング に対して安定であった円断面

円断面ケーブル模型

模型と,顕著に不 安定化を示した 編状突起付き模 型について、流れ の可視化実験並 びに PIV 解析を行 い、ギャロッピン

Fig.4 座標軸

グの発現メカニズムの解明を試みた. 座標軸 x, y, z を Fig.4 のように定め, 原点は模型後縁端で模型中央高 さとした. PIV 解析では高速度カメラを用いて, x-y 平 面及び x-z 平面の撮影を行った.強制加振周波数は 1.4[Hz], 風洞風速は縞状突起付き模型で非定常空気力 係数 H_1^* が最大となる 8[m/s]とした.

3.1 X-Y 平面下流側風速特性

円断面模型及び縞状突起付き模型の模型静止時にお ける下流側 x-y 平面における x 方向の時間平均風速 Ux を Fig.5 に示す. これらより, 縞状突起付き模型の方が 円断面模型よりも低風速領域が下流側に伸びているこ とが確認された.これは、表面粗度の効果及び軸方向 流の効果でカルマン渦の放出が抑制され、模型後縁付

Fig.5 x 方向時間平均風速分布 (静止時)

キーワード 斜張橋ケーブル,ギャロッピング,カルマン渦, PIV 解析 連絡先 〒615-8530 京都市西京区京都大学桂 C1-3-457 橋梁工学研究室 TEL075-383-3170

-617-

近への巻き込みが弱く、時間平均流れの曲率が小さく なっているためであると考えられる.

強制加振時の模型下流側 x-y 平面内の x 方向計測位置 x/D=0.15~1.0, y方向計測位置 y/D=-0.7~0.7 の範囲内で 変動風速を抽出し、加振周波数 1.4[Hz]のバンドパスフ ィルタを通して得られた変動成分に平均風速を加えた ものを Fig.6 に示す. ただし,図は模型が鉛直最大変位 を取る瞬間を一例として示したものであり、縦軸上の 赤色のスケールは、模型位置を示す.これらより、 縞 状突起付き模型では,円断面模型と比較し,模型の振 動に追随し、模型背後の x/D=0.15~0.3 付近で低風速の 領域が存在していることがわかる.従って,2次元 x-y 平面内で議論すると、ケーブル断面の下流側に、ある 断面が付随したような断面形状の周りの流れ場と同等 になっていると考えられる.

3.2 X-Z 平面下流側風速特性

本研究では、傾斜ケーブル背後で発生する軸方向流 の流速分布を把握するために, x-z 断面の PIV 解析を行 った.円断面模型, 縞状突起付き模型において, 計測 された各点の z 方向の時間平均風速 U,を x-y 平面のコ ンター図で表したものを Fig.7 に示す. これらの結果よ り, 両断面とも x/D=0.3~0.5 の比較的模型近傍で軸方

向流が強くなっていること、模型背後のy方向のほ ぼ全域にわたってかつ後方まで軸方向流が発生し ていることが確認された.従って、軸方向流はカル マン渦を抑制する効果はあるものの、従来考えられ ていたスプリッター板のような効果、即ち、剥離流 れと板の間に内部循環流が形成されるような流れ は考えられず、ギャロッピングの直接的な要因では ない可能性が示唆された.

3.3 ギャロッピング発生機構に関する2次元的考察 傾斜ケーブルでは主流方向の切断面が楕円形と なるが,一般に2次元楕円断面ではギャロッピング は発生しないことが知られている.しかし、 縞状突 起付き模型では表面粗度の効果によって、もしくは 円断面ケーブルにおいてもより高風速域で臨界レ

イノルズ数域に達した場合には、カルマン渦の放出が 抑えられ,その結果,剥離剪断層の曲率が小さくなり, 後流域に低風速領域が形成されると考えられる. その 結果, Fig.8 に示す様に、剥離剪断層とケーブル断面の 間に内部循環流もしくは圧力回復が生じ、ギャロッピ ングが発現する可能性が示唆される.

Fig.8 ギャロッピング発生機構

4. 結論及び今後の課題

ギャロッピングの発生機構を2次元的に考察すると, 臨界レイノルズ数域でカルマン渦が抑制された結果, 剥離剪断層の曲率が小さくなり、楕円断面の後流域に 低風速領域が形成されるため、ギャロッピングが発生 する可能性が考えられる.また,軸方向流の効果はカ ルマン渦を抑制する効果は有するが、ギャロッピング の発生の直接的な要因ではないことが示唆された. 今 後は 3 次元的な流れからギャロッピング不安定性を議 論する必要があると思われる.

謝辞

本研究の一部は、日本学術振興会科学研究費補助金・ 基盤研究(C)(課題番号 21560501)ならびに高橋産業経済 研究財団からの助成を受けて実施されたものである. 参考文献

- 1) M.Matsumoto, T.Yagi, Y.Adachi, H.Hatsuda T.Shima: Karman vortex effects on aerodynamic instabilities of inclined stay-cables, Proc. of the 12th Intl. Conf. on Wind Engineering, 2007, pp.175-182.
- 2) T. Yagi, S. Narita, K. Okamoto, K. Shinjo, H. Shirato: Investigation of dry-state galloping of stay-cables with various kinds of surface configuration, Proc. of the Ninth Int. Symp. on Cable Dynamics, 2011, pp.215-222.
- 3) R.H. Scanlan, J.J. Tomko: Airfoil and bridge deck flutter derivatives, Journal of Engineering Mechanics Division, Proc. ASCE., vol.97, EM6, 1971, pp.1717-1737.