東北地方太平洋沖地震による高架橋上電化柱の

損傷に及ぼす土木構造物や地盤等の影響

JR 東日本	正 会 員	○草野 英明
JR 東日本	フェロー	野澤伸一郎
JR 東日本	フェロー	岩田 道敏

1. はじめに

2011 年 3 月 11 日に発生した M_w9.0 の東北地方太平洋沖地震および同 4 月 7 日に発生した余震では,東北新幹線の高架橋や橋梁上の電化柱が折損・傾斜し,復旧に多くの時間を要した.

本報告では、電化柱の主な損傷地区(白石蔵王付近・仙台付近・古川~くりこま高原付近)における電化柱の基礎形 式、土木構造物形式、地盤の固有周期による損傷の違いを考察し、その結果について報告する.

2. 被害概要

3月11日の本震における電化柱の被害は、図 -1 に示すように大宮~いわて沼宮内の延長 500km 以上の広範囲で発生している.また復旧 が進んだ中で発生した4月7日の余震では、郡 山付近~いわて沼宮内にかけて再度被害を受け た.大宮からいわて沼宮内間の電化柱は17,418 本あり、内訳は鋼管柱が910本、鉄柱1,340本、 コンクリート柱が15,168本である.このうち被 害を受けたのは大半がコンクリート柱で、写真 -1のような損傷が本震では折損120本、傾斜は 416本発生した.また余震においてもコンクリー ト柱に被害が集中し、折損68本、傾斜200本で あった.なお、余震で被害を受けた電化柱の本 数は、補修後に再折損した電化柱も含んでいる.

3. 基礎構造と損傷状況

東北新幹線の高架橋や橋梁上のコンクリート 柱の基礎形式は施工年代により変化しており, 建設当初は投げ込み式基礎(モルタル)が主流 であったが,宮城県沖地震以降は投げ込み式基 礎(砂詰め)に変更され.その他,建設箇所の 条件等によりアンカー基礎も多く採用されてい る.今回調査対象とした白石蔵王付近・仙台付 近・古川~くりこま高原付近の3箇所におけるコン クリート柱は756本あり,折損した数は95本で あった,基礎構造と折損した電化柱の関係を表 -1に示す.表に示すように電化柱の折損率は,

写真-1 折損・傾斜したコンクリート製電化柱

キーワード 地震 電化柱被害 固有周期

連絡先 〒151-8578 東京都渋谷区代々木 2-2-2 東日本旅客鉄道(株)構造技術センター TEL03-5334-1288

モルタルの場合が 31.9%と最も高い. これはモル タルによって電化柱の基部が拘束され, 揺れに対 する減衰効果が無いことが原因としてあげられ る. また, 減衰効果のある砂詰めも 9.6%の被害を 受けているが, この原因として地震動の長さが影 響していると考えられる. これは本震の長さが 150~200 秒程度と長時間繰り返された振動によ り, 砂詰めによる減衰効果が無くなったと想定さ れ, 今後検討が必要である.

4. 土木構造物形式と損傷状況

今回調査対象とした区間における電化柱が建 植している土木構造物の形式は,表-2に示すよう に橋脚・ラーメン橋台・高架橋の3つに分類され る.その中で電化柱の折損率を比較すると,それ ぞれ 10 数パーセントの割合で折損が発生してお り、土木構造物の形式に対する差異は見られなか った.また,折損した95本の電化柱のうち18本 は、地震動により損傷を受けた土木構造物上に建 植されていたが、他の電化柱は土木構造物が大き な損傷を受けていないにも係わらず損傷していた.

5. 地盤種別と損傷状況

耐震設計上の地盤種別は、表層地盤のせん断弾 性波速度に基づいて算定される固有周期に応じて, 表-3 に示すとおり G0 地盤から G7 地盤までに区 分され,今回調査対象とした区間については表-4 のとおり G1・G2・G3 地盤の3 種類に分類される.ま たコンクリート製電化柱の固有周期は,一般的な電化 柱のモルタル基礎で約 0.5sec,砂詰め基礎で約 0.7sec とされているが,地盤種別の中で電化中の折 損率を比較すると,G1 地盤における折損率は 10%, G2 地盤では 19.7%・G3 地盤では 16.5%となって おり,高い相関性は認められなかった.

6. まとめ

今回被害を受けたコンクリート製電化柱の折 損状況について,電化柱の設置条件から比較を行 ったが,基礎構造による比較ではモルタル基礎の 場合の被害が最も多く,土木構造物と地盤種別で 比較した場合,高い相関性は見られなかった.

表−1 基礎構造によるコンクリート製電化柱被害状況

電化柱本数		折損本数/折損率 ^{注1)}		
全体	内訳	本震	余震	合計
756本	砂詰め:311本	23本 / 7.4%	7本 / 2.3%	30本/9.6%
	モルタル:113本	19本 /16.8%	17本 /15.0%	36本/31.9%
	アンカー:332本	20本/6.0%	9本/2.7%	29本 / 8.7%

表-2 土木構造物形式によるコンクリート製電化柱被害状況

電化柱本数		折損本数/折損率 注1)		
全体	内訳	本震	余震	슴탉
	橋 脚:411本	27本/6.6%	21本/5.1%	48本 /11.7%
756本	ラーメン橋台:109本	7本/6.4%	5本/4.6%	12本 /11.0%
5	高 架 橋:236本	28本 /11.8%	7本/3.0%	35本 /14.8%

表-3 耐震設計における地盤種別

地盤種別	固有周期(sec)	地盤条件
GO	—	岩盤
G1	-	基盤
G2	\sim 0.25	洪積層
G3	$0.25\sim 0.5$	普通地盤
G4	$0.5\sim 0.75$	普通~軟弱地盤
G5	$0.75 \sim 1.0$	軟弱地盤
G6	$1.0 \sim 1.5$	軟弱地盤
G7	1.5 ~	極めて軟弱地盤

表-4 地盤種別によるコンクリート製電化柱被害状況

電化柱本数		折損本数/折損率 注1)		注1)
全体	内訳	本震	余震	合計
756本	G1 地盤:507本	26本 / 5.0%	25本 / 5.0%	51本/10.0%
	G2地盤: 86本	10本/11.6%	7本/8.1%	17本 /19.7%
	G3地盤:163本	26本 /15.9%	1本/0.6%	27本 /16.5%

※注1)余震・合計の折損本数/折損率には再折損した電化柱を含む

今後は電化柱損傷原因の推定と電化柱の耐震補強工法を開発し、将来発生すると想定される大地震に対して 鉄道の安全性を更に向上させたいと考えている.

参考文献

1) 財団法人鉄道総合技術研究所:鉄道構造物等設計標準・同解説 耐震設計, 1999.10

-253