変形の空間分布計測による損傷検知に関する検討 (その2)数値解析による変状検知性能評価

清水建設(株) 正会員 〇稲田 裕

1. 解析の目的と概要

本編では、(その1)で得られた計測結果を基礎データと して用い、実現象を反映した解析モデルを構築する.そし て、解析によって実際の計測では得られにくい様々な条件 を変えた応答評価(仮想モニタリング)を行い、モニタリ ングデータを用いた変状評価手法の整備を図る.

仮想モニタリングでは, 簡便な構造解析による系統的な 評価が有効であるが, その基礎検討として RC 構造の 2 次 元非線形解析汎用ソフト (FORUM 8, UC-win/WCOMD) を 適用する. 解析では, 鉄筋は分散鉄筋モデルの RC 要素と して扱われ, 平面 2 方向の鉄筋比を設定する. そこで, (そ の1)で示した鉄筋欠損を与えた各試験体について, 相当す る損傷要素の鉄筋比を低減させた. 解析モデルと変形の算 定結果の例を図1に示す.

2. 有限要素解析の検証

有限要素解析による解析結果と実験結果の比較として, 実験の計測点における荷重に伴うたわみ変化について,計 測値(波線)と解析値(実線)を比較した例を図2に示す. 鉄筋欠損幅の異なる二つの試験の結果はともに,計測値と 解析値が良く一致しており,計測点による変動傾向も解析 により良く表現されている.また,損傷が大きくなったと きの強度・変形性能の低下傾向も,解析により適切に表さ れていることが分かる.

次に,実験のピーク荷重における歪み分布について,解 析結果(実線)と実験結果(◆印)を図3に比較する.損 傷のないD0-W0の結果では,解析値と計測値は良く一致し ており,歪み分布についても解析が実験を良く再現してい ることが分かる.損傷を与えた試験体D1-W100についても 歪み分布は概ね等しく,損傷部の歪みの増大傾向も解析に より表現されている.

以上の結果から、本実験のような単純な RC 梁の曲げ変 形に関しては、ここで設定した 2 次元の有限要素解析によ って、ひび割れ発生等による鉄筋コンクリートの非線形挙 動を含めて評価が可能であることが確認できた.

3. 解析による損傷影響評価

実験による評価では、計測精度、応答のばらつきにより 損傷影響の抽出には限界がある.そこで、本項では損傷が たわみや歪みの応答に及ぼす影響を解析により評価する.

(その1)と同様に,損傷を有する試験体の応答値につい て,損傷のない試験体 (D0-W0-1)からの変化を求める. はじめに,試験体 D1-W100 と D1-W200 を例として,たわ み変動 δ の損傷無し δ からの変化率(δ - δ)/ δ_0 の分布を図4に 示す.各荷重における変化率は,損傷位置をピークとする なだらかな分布となり,損傷の影響が広い範囲に分散して いる.変化率は全体に小さく,鉄筋が降伏する荷重になっ ても 10%以下に留まる.特に,ひび割れが進展するまでは 変動のピーク位置も判別しにくく,たわみ計測による損傷 位置の検出には課題があることが確認できる.

同様に,損傷による歪みの変化率 (*ε*-*α*)/*α*,を求め,同じ 試験体の結果を図 5 に示す.たわみの場合とは異なり,変 化は損傷位置に集中し,損傷位置が変化の生じる範囲とし て明確に表されている.また,変化率の値も荷重が小さい 範囲から 10%を超え,たわみの場合と比べると大きく,損

キーワード 変状評価,ウェーブレット解析,構造モニタリング,損傷検知 連絡先 〒135-8530 東京都江東区越中島 3-4-17 清水建設(株)技術研究所 Tel 03-3820-8315 傷位置と程度の検知が容易であることが分かる.ただし, 損傷範囲を外れた位置には変化が見られないため,損傷位 置を的確に計測する必要がある.

4. 空間ウェーブレット解析による変状検知

損傷による歪み分布変化の位置と程度を表す指標を導く ことができれば、損傷と応答変化の関係の定量的な評価が 可能となる.ここではその第一歩として、空間ウェーブレ ット変換の適用を試みる.ウェーブレット変換の詳細な説 明は省くが、正規直交の離散ウェーブレット変換による多 重解像度解析を適用し、歪み分布a(x)を次式のように詳細成 分 D₍(x)と残りの近似成分 S₍(x)に分解する¹⁾.

 $\varepsilon(x) = \sum_{i=1}^{J} D_i(x) + S_I(x) \tag{1}$

詳細成分 D_j(x)は、各レベル j のスケール幅に応じた変化 (不連続性)を表すため、損傷の有無による詳細成分の変 化を求めれば損傷による変化の大きさと範囲を抽出するこ とができる.

歪み分布から直接損傷影響を検出することが難しいひび 割れ発生前の荷重 2kN において,詳細成分の変化を求めた 結果を図6に示す.前項までと同様に,試験体 D1-W100 と D1-W200 を例として,レベル4までの詳細成分変化を求め た.1次の詳細成分は損傷位置において大きな変化を生じて おり,損傷位置の明確な検出が可能である.また損傷範囲 の異なる二つの結果を比較すると,各レベルの変化量の大 小関係に差異が見られ,損傷長さの長い D1-W200 の方が高 次のレベルの成分が相対的に大きくなっている.

実験の全ての試験体の損傷条件について、上と同様に詳

細成分の変化を求め,各レベルの詳細成分変化の最大値を 算定する.荷重2kNと4kNの場合について、レベルごとの 最大値の分布を比較した結果を図7に示す.損傷の増大に 応じて各レベルの最大変化量は大きくなるが,損傷範囲の 大きな試験体ほどレベルが大きい成分の値の増加が顕著と なる.また,損傷程度と荷重が大きく,損傷部の曲率変化 が激しいケースでは,変化量が全体に増大するとともに,1 次の詳細成分が卓越していることが分かる.

5. まとめ

本報では、簡単な RC 梁モデルを対象とした実験と解析 を連携した評価により、変形計測による損傷評価の可能性 の検討を行った.劣化や損傷を検出するための計測対象と して、歪みの空間分布は有効な評価指標である.それを実 現する計測手法として、(その1)で示したような高精度、 高空間分解能を有する光学式の歪み分布計測手法は適用性 を持つことが確認できた.また数値解析を用いた仮想モニ タリングによって、実際には得られにくい損傷を生じた試 験体の応答特性を把握することができ、損傷評価手法の事 前の整備が可能である.損傷評価の例として、歪み分布変 化の検出に空間ウェーブレット変換の適用を図った結果、 損傷程度と範囲を定量的な指標の抽出の可能性があること が分かった.今後は評価指標の適切な定量化を図り、系統 的な解析を実施することにより、変状の特徴抽出や損傷同 定へと展開を進める.

参考文献

1) D. B. Percival, et.al.: Wavelet Methods for Time Series Analysis, Cambridge Univ. Press, 2000.

