変形の空間分布計測による損傷検知に関する検討 (その1)小型 RC 梁曲げ試験と光学式歪み計測の適用

清水建設(株) 正会員 ○岩城 英朗 清水建設(株) 正会員 稲田 裕

1. はじめに

インフラ構造物の長寿命化を目的として、維持管理にお いて構造モニタリングを活用し、構造物の性能評価や健全 性診断を可能とするための研究が進められている. その実 現には、局所的に発生する劣化や損傷と、モニタリングで 計測する加速度や変位、歪みなどの応答変化との関係を明 らかにすることが重要である. そのため本研究では、様々 な劣化や損傷を想定した数値シミュレーションにより解析 的に損傷モデルを創出する手法(仮想モニタリング)に基 づく検討を進めている. そして, 温度変形の空間分布変化 により劣化や損傷の発生を検知する方法を提案してきた¹⁾. 本報では、解析モデルの検証/高度化と評価結果の計測へ のフィードバックを目的として、実験と解析とを連携した 評価を行う. はじめに模擬損傷を有する試験体の曲げ試験 を行い、損傷が変形計測に及ぼす影響を検討する.実験で は新しい光学的な歪み計測手法を適用する(その1). さら に,その実験結果を反映した解析による検討を進め,損傷 と計測値の関係の評価手法について検討を行う(その2).

2. 試験の概要

試験体は図1に示すように断面10cm×10cm,幅1mの RC梁とする.そして、単純化した模擬損傷として鉄筋の一 部に欠損を与えることとして、表1のように欠損長さと本 数を変えた5体の試験体を用意した.試験体は、鉄筋配筋 後に設定した範囲の鉄筋を切断し、その後コンクリートを 打設して製作した.

記号	欠損長さ(mm)	欠損鉄筋
D0-W0	0	—
D1-W50	50	中央1本
D1-W100	100	中央1本
D1-W200	200	中央1本
D2-W100	100	両端2本

表 1 試験体の仕様

試験方法は二点載荷の一方向曲げ試験として,最大荷重 を徐々に上げる漸増載荷を行った.計測項目は荷重と図 1 の 3 点の変位 (DP-1~3),試験体底面の軸方向歪みとした. 歪み計測は図 2 に示すように,歪みゲージ(ゲージ長 20mm, SR-1~7) とパイ型変位計(標点距離 50mm, PI-1~9)を用 い,次項の光学式分布歪み計測結果と比較する.

3. 光学式歪み計測システムの適用

光ファイバを用いた光学式の歪み計測の利点として、フ ァイバ経路に沿った連続的な歪み分布を計測できることが 挙げられる.分布歪み計測手法としてはブルリアン散乱光 の周波数変動に着目した B-OTDR 方式が一般的であるが、 空間分解能に限界があること、静的計測に限られることな どが課題とされている.そこで本検討では、最近開発され た光学後方散乱光測定器(LUNA Technologies, OBR 4600) の適用を図る.このシステムは、波長掃引式の干渉分光計 を用いてレイリー散乱光を計測し、その周波数変化を分析 することにより、高精度・高空間分解能の温度・歪みの分 布計測を可能としている²⁾.現状では、光ファイバケーブル の特性、伝送性能評価が主で他の部材の歪み計測への適用 検討は進められていないため、本検討によりコンクリート 部材への適用性の評価を図る.

センサとして用いる光ファイバケーブルは FTTH 配線用 の光ドロップケーブル (ACS 社製) とする. 強度確保のた めの支持線は予め外し,付着確保のため被覆材の表面の目 荒らしを施した. そして,試験体製作後に底面中央部に溝 (幅 10mm,深さ 5mm)を掘り,ファイバをキャッピン グ材で固定した. なお,光学式歪み計測は,荷重サイクル のピーク荷重/除荷時に実施し,空間的な計測ピッチは 1cm としている.

4. 試験結果

はじめに各試験体の強度特性を求めた結果を表2に示す. 損傷の大きい3体の試験体は上部コンクリートの圧壊が発

キーワード 変状評価,光学式歪み計測,構造モニタリング,損傷検知 連絡先 〒135-8530 東京都江東区越中島 3-4-17 清水建設(株)技術研究所 Tel 03-3820-8315 生したため、その荷重を破壊荷重としている.初期損傷の 増大に伴い試験体の強度は低下しており、特に降伏、破壊 強度への損傷程度の影響は顕著に現れる.

$X = W \otimes W \otimes V \otimes Z \otimes V \otimes V$	表 2	試験体の強度特性	(単位;	kN)
---	-----	----------	------	-----

	D0-W0	D1-W50	D1-W100	D1-W200	D2-W100
ひび割れ	4.00	4.40	3.20	3.10	3.60
曲げ降伏	12.57	11.60	10.80	10.00	7.40
破壊	-	-	13.89	13.20	10.28

荷重に対する鉛直方向のたわみ変動の関係の例として, 損傷のない D0-W0 と 1 本の鉄筋を 100mm 欠損させた D1-W100 の関係を図3に示す.損傷により剛性が低下し, 鉄筋降伏とそれ以降の荷重の低下が著しい.また,D1-W100 では損傷のある右側のたわみ(DP-3)が左(DP-1)に比べて大 きくなるが,その差は破壊に近づくまで非常に小さく,変 形の小さい領域におけるたわみ計測値による損傷位置の検 出は容易でない.

初期損傷の歪み分布への影響の評価のため、パイ型変位 計計測値から求めた平均歪みについて、損傷の有無による 分布変化を求める.損傷有りの試験体の歪み ϵ と無しの歪み aから変化率 (ϵ -a) /a を算定し、例として試験体 D1-W100 と D1-W200 について荷重 0.5, 1, 2, 4 での変化率の 分布を図 4 に示す.変化率の増加は損傷箇所に集中し、損 傷程度に応じて変動範囲が変化しており、歪み分布の計測 による損傷箇所の判定の可能性が確認できる.しかし、損 傷箇所以外に発生したひび割れの影響も見られる.

試験体 D0-W0 と D1-W100 について光学式分布計測と歪 みゲージの計測値との比較を図5に示す.ひび割れ発生前 の2kNまで0.5kN間隔の荷重ピーク時の光ファイバ計測結 果を実線で、対応する歪みゲージの結果を◆で表す.また、 その後に目視により検知された初期ひび割れの発生位置を ▽で示した. 光ファイバにより得られた分布歪みと歪みゲ ージの値は数10µの歪みから良く一致しており,分布形状変 化も適切に把握できている.また、ひび割れ荷重以下の領 域からひび割れ発生箇所と概ね同じ位置に歪み分布の山が 見られ、ひび割れ発生直前の歪みの増加が検出できている. ここでは結果は省略するが、ひび割れ発生後の大きな変形 時の歪み計測値もパイ型変位計の結果と良く一致しており, 4000µ程度までの精度は確認できた.しかし、局所的な歪み のピークが発生すると、その影響により周辺に激しい歪み の増減が発生すること、ファイバ両端からの芯線の抜けの 影響が見られること等の課題も見られた.

5. 考察

鉄筋欠損を模擬損傷として付与した RC 梁の曲げ試験の 結果,降伏や破壊などの強度特性には損傷の影響が顕著に 表れることが確認できた.一方,ひび割れ発生前の荷重領 域での計測結果への損傷の影響は小さく,特に変位計測結 果からの損傷箇所の特定は難しい. 歪みの空間分布変化は 損傷位置と程度の検知に有効な指標であり,今回適用した 光学式計測手法は高感度,高空間分解能の計測が可能で, 損傷検知に適用可能性を有することが確認できた.計測デ ータの応答メカニズムの分析とデータ処理,信号ケーブル の最適化などは今後の課題である.

謝辞

光学式歪み分布計測では、計測機器の使用、計測の実施 に当たり、(株)アドバンスト・ケーブル・システムズの方々 のご協力を賜りました.この場を借りて謝意を表します.

参考文献

- 稲田:局所的な損傷による温度変形分布の変化に着目した構 造物の変状評価、土木学会年次講演会、I-519,2011.9.
- S.T.Kreger, et.al.: High Resolution Distributed Strain or Temperature Measurements in Single- and Multi-Mode Fiber Using Swept-Wavelength Interferometry, OSA Technical Digest, ThE42, 2006.

