はり中央がせん断崩壊する鋼門形ラーメンの柱基部の軸力変動について

神戸市立工業高等専門学校	学生会員	○辻上和輝
和歌山工業高等専門学校	正 会 員	山田 宰
神戸市立工業高等専門学校	正 会 員	酒造敏廣

t_{fi}

1. まえがき

鋼門形ラーメン橋脚のはり部材は変断面構造になっており,曲げモーメントが小さい中央腹板には比較的幅 厚比が大きい鋼板が用いられている.そのため,地震時にせん断座屈崩壊する可能性がある.筆者らは,数値 解析・実験により,この種の門形ラーメンの地震応答を調べてきた¹⁾⁻³⁾.そ

して、早期にせん断崩壊する腹板の抵抗せん断力の変動が隅角部・柱基部の 損傷や履歴エネルギー分担に少なからず影響を及ぼすことを明らかにした.

本研究は、文献1)で実施した門形ラーメンの地震応答解析の結果からデー タを抽出して、はり中央がせん断崩壊するときの柱基部の軸力変動と損傷に ついて考察するものである.

2. はり中央がせん断崩壊するラーメンの地震応答解析

(1) ラーメンの解析モデルと地震応答解析の概要¹⁾

図1に示すように,柱頭部に上部工死荷重に相当する 定鉛直荷重 P が作用した状態で,水平地動 $a \ddot{U}_{oz}(t)$ を受 ける一層一径間の門形ラーメンを研究対象とした. 柱・はりは断面 Sec.1~Sec.6 からなる. Sec.6 は,腹板 に塑性せん断変形の発生を想定した断面である. 解析 モデルの寸法諸元と降伏点等を表1にまとめる. ここ で,塑性せん断変形する Sec.6 の長さは,はりの腹板高 さ D_b の2倍に仮定している. 応力-ひずみ関係は,等 方・移動硬化を簡易的に考慮した Bi-Linear 型の曲線を 仮定し,ひずみ速度の影響も考慮している¹⁾.解析は, 文献 2), 3)に示した平面骨組の動的応答解析法に従って いる.

水平地動加速度としては El Centro 波(1941)の NS 成分記録の最初の 8 秒間を 2 倍(= α)に増幅して用い た.これは,はり腹板が弾性状態に留まるラーメン(β_{py} =1.31)に対して,柱頭部の水平変位の弾性応答値が降 伏変位の約 3.4 倍になる加速度に相当する. (2)はり中央の塑性化パラメータ β_{py}

文献 1), 2)を参考にすると、次に示すパラーメタ $\beta_{py} < 1$ の とき、はり中間部腹板のせん断降伏が隅角部腹板のそれに先 行し、はり中間部に塑性せん断変形が集中する.

$$\beta_{p\gamma} = \frac{1}{2\xi} \frac{L_0}{D_c} \frac{Q_{by}}{Q_{sy}} \tag{1}$$

ここに、 Q_{by} 、 Q_{sy} ははり中央腹板と隅角部腹板の降伏せん断力、 また、 ζ は地震動の影響を考慮するためのパラメータである.

(a) 断面図 Sec.i (i=1,6) -定) P(=せん断 🖌 隅角部 集中 腹板 パネル 質量 M_z $\mathbf{T} D_b$ Sec.3 b_1 b_2 b_3 Sec.5 Sec.6 Sec.4 Sec.2 k_2h Sec. 7 L_O $\rightarrow D_c$ L 水平地動 $\checkmark \alpha \ddot{U}_{oz}(t)$

D^p

ñ

x.

(b) はりがせん断崩壊する門形ラーメン 図1 一層門形ラーメンの解析モデル

表1 解析モデルの諸元 (β_{pyl}=0.842)

項目	板厚 (mm)		降伏点(MPa)
断面 <i>i</i>	t_{fi}	t_{wi}	$\sigma_{fyi}(\sigma_{wyi})$
Sec.1	32	24	337 (337)
Sec.2	26	19.5	353 (353)
Secs.3	36	27	379 (379)
Sec.4, Sec.5	36	27	379 (379)
Sec.6	36	9	314 (314)

注) h=15m, L=12m, B=2m, D_c=D_b=1.5m, b₁+b₂= 2.5D_b, b₃=2D_b, 隅角部腹板: t_{ws}=27mm, σ₃=379Mpa, k₁= 0.263, k₂=0.667, k₃=0.07, L_o/D_c=7, P=0.159N₂, M_z=1.103×10⁶kg, E=2.06×10⁵MPa, N₂:Sec.2 の降伏 軸力, σ_{5'}, σ_{wy}: 断面 i のフランジ・ウェブプレー トの降伏点, ラーメンの固有周期 T_o=1s.

キーワード はりのせん断崩壊, 門形ラーメン, 地震応答解析, 柱の軸力変動 連絡先 〒651-2194 神戸市西区学園東町 8-3 TEL 078-795-3263 FAX 078-795-3311

$$\xi = 1 + \frac{Q_{clE}}{4D_c t_{ws} \tau_{sy}} \tag{2}$$

ここで、 Q_{cle} は隅角部腹板がせん断降伏するときに、隅角部直下の柱断面に作用するせん断力である.

3. 数値解析の結果と考察

まず,はり中央の塑性化パラメータ β_{py} =0.35 と 0.84 のラーメンについて,水平復元カー水平変位曲線,及 び,はり中央と柱基部の断面カーひずみ曲線を**図 2** に 比較する.この図からわかるように, β_{py} =0.35 のとき, はり中央の塑性せん断変形が著しくなり, $Q-\gamma$ 曲線が 大きな履歴ループを描いている.また, β_{py} =0.35 のラ ーメン柱基部では,0.84 のときよりも作用軸力が抑え られ,軸ひずみの進展も小さい.

っぎに、 β_{py} によるラーメンの塑性崩壊パターン、柱 基部の軸ひずみ、及び、最大軸力の変動を図3に示す. この図から、 β_{py} が小さくなると、柱の軸ひずみと軸圧 縮力の低下が大きいことがわかる.これは、はり中央 の塑性化が早期に起こって、はり部材の抵抗せん断力 が頭打ちになって、柱の軸力変動を小さな範囲に留め るためである.

4. まとめ

鋼門形ラーメンのはり中央がせん断崩壊するとき, 柱に伝達されるせん断力が頭打ちになって,柱の軸力 変動を抑える効果があることを確認できた. 今後,は りと柱の履歴エネルギー分担の特性³⁾と合わせて,は り中央のせん断崩壊を認める門形ラーメンの耐震設 計法について検討していく予定である.

参考文献 1)酒造敏廣: せん断崩壊型はり部材を持つ鋼 門形ラーメンの非弾性地震応答に及ぼすひずみ速度

の影響,構造工学論文集, Vol.47A, 土木学会, pp.771~782, 1998年3月. 2)酒造敏廣: せん断崩壊型は り部材を有する鋼門形ラーメンの非弾性地震応答性状に関する研究,構造工学論文集, Vol.44A, 土木学会, pp.169-178, 1998年3月. 3)山田 宰,酒造敏廣: はりがせん断崩壊する鋼一層門形ラーメンのオンライ ン実験法による地震応答解析,土木学会論文集A, Vol.65, No.2, pp.348~361, 2009年4月.