二重周期弾性場の表面波伝播特性に関する研究

新潟大学大学院自然科学研究科	学生員	荒木 聡秀
新潟大学工学部建設学科	正会員	阿部 和久
新潟大学大学院自然科学研究科	正会員	紅露 一寛

1. はじめに

近年,過密化した都市部では工事振動や交通振動などで 発生する地盤振動が問題となっている.このような問題に 対して,地中に防振壁を設置し振動を遮断する工法が提案 されているが,施工性や経済性の点で問題がある.そこで より簡易的な対策として柱列式の振動低減工法が提案され ている.当該工法による防振効果には,柱(杭)を周期的 に配置することで表面波モードが存在しない周波数帯(バ ンドギャップ)を形成することが関係しているものと考え られる.よって遮蔽効果の評価には,このような周期場の 分散解析が有効と思われる.

本研究では,上述の様な周期配置された柱列への適用を 念頭に,自由表面内に二重周期構造を有する三次元半無限 場の表面波分散解析を試みる.

2. 解法の構成

図1に示す様に,自由表面内に介在物が周期的に配置され,深さ方向に一様な半無限場を対象とする.母材と介在物は何れも均質な弾性体とし,それらの結合面は完全に付着しており,剥離や滑り等は生じないものとする.

周期構造を構成する1ユニット当たりの解を次の様に構成する.

$$\boldsymbol{u}(x,y,z) = [\boldsymbol{N}(x,y)] \{ \boldsymbol{U} \} e^{-i(\kappa_x x + \kappa_y y) - i\beta z}$$
(1)

ここで, [N]は有限要素分割する際の補間関数より与えられる行列, $\{U\}$ は節点変位ベクトル, $\kappa_x, \kappa_y, \beta$ はx, y, z方向波数である.ただし, $\{U\}$ は1ユニットセル両端で周期条件を満たすものとする.この時, u(x, y, z)はBlochの定理¹⁾を満たす.式(1)の様に解を構成することで,離散化はx, y面内のみとなり,実質問題の次元を低減することができる.式(1)を運動方程式に代入し離散化して次式を得る.

$$[\boldsymbol{K} - \omega^2 \boldsymbol{M}] \{ \boldsymbol{U} \} = \{ \boldsymbol{F} \}$$
(2)

ここで, [K], [M] はそれぞれ剛性行列, 質量行列, ω は円 振動数, $\{F\}$ は節点力ベクトルである.ここで, $\{U\}$ の節 点変位成分を次の様に変換する 2 .

$$\begin{cases} u_i \\ v_i \\ w_i \end{cases} = \begin{cases} \hat{u}_i \\ \hat{v}_i \\ i\beta\hat{w}_i \end{cases}$$
(3)

Key Words: 表面波,周期構造,分散構造,柱列式防振壁 連絡先:950-2181 新潟市西区五十嵐二の町 8050 番地 TEL 025 (262) 7028 FAX 025 (262) 7021

図1 二重周期性を有する半無限場

すると次式を得る.

$$\hat{K}_1 + \beta^2 \hat{K}_2 - \omega^2 \hat{M}] \{ \hat{U} \} = \{ \hat{F} \}$$
 (4)

ここで, $[\hat{K}_j](j = 1, 2)$ は係数に β を含まない行列である. 1 ユニットの境界節点に周期条件を課し行列を縮約すると, $-\beta^2$ に関する固有値問題を得る.

$$[\tilde{\boldsymbol{K}}_1 - \omega^2 \tilde{\boldsymbol{M}}] \{ \tilde{\boldsymbol{\phi}} \} = -\beta^2 [\tilde{\boldsymbol{K}}_2] \{ \tilde{\boldsymbol{\phi}} \}$$
(5)

式 (5) より,下方 (z 方向) に進行する波動成分のみ抽出し,解を次式により構成する.

$$\{\tilde{\boldsymbol{U}}(z)\} = \sum_{j}^{\tilde{N}} \alpha_{j} e^{-i\beta_{j} z} [\tilde{\phi}_{j}]$$
(6)

ここで, α_i は結合係数である.

式(6)の解表現に基づき,自由表面で節点力ゼロの条件 を課すと次式を得る.

$$\int_{\Omega} [\delta \bar{u}] \left\{ \begin{array}{c} \tau_{zx} \\ \tau_{zy} \\ \sigma_{z} \end{array} \right\} d\Omega = [\delta \bar{\tilde{U}}][C] \{\alpha\} = 0$$
(7)

ここで, Ω は二次元ユニットセルの領域であり,[C]は式 (7)の積分より得られる行列である.

以上より表面波モードの条件は次式で与えられる.

$$\det[C] = 0 \tag{8}$$

なお,行列式の直接評価は,その値が大きく変動する恐 れがあり,必ずしも得策でない.そこで,以降の解では式 (8)の代わりに,次式の様に絶対最小固有値がゼロとなる条 件に基づき,分散曲線の探索を行う.

$$[\mathbf{C}]\{\boldsymbol{\alpha}\} = \mu\{\boldsymbol{\alpha}\} \qquad (\mid \mu \mid = 0) \tag{9}$$

図2 正方格子状の配列 (左) と第1 Brillouin ゾーン (右)

3. 解析例

(1) 正方格子状に配置されたコンクリート柱列

半径 aの円形中実断面のコンクリート柱を,図2の様に L = 4aの間隔で正方格子状に配置した場合を想定し,表面 波分散解析を実施した.解析に当り,母材(地盤)と介在物 (コンクリート柱)のポアソン比はそれぞれ 0.4 および 0.2 と し,母材に対する介在物のせん断剛性比と密度比をそれぞ れ10と1.5に設定した.ユニットセルの有限要素分割には 3次セレンディピティ要素を用い, x, y 方向をそれぞれ4分 割し,16要素で離散化した.

図2の第1 Brillouin ゾーンにおける A-B-C-A 上の波数に 対して求めた表面波(R)モードの分散曲線を図3に示す、図 には,図2と同一の周期構造を持ちz方向に無限に続く領 域で与えられる平面ひずみ場における面内波 (P.SV) モード と, z 方向面外波 (SH) モードの分散曲線も合わせて示した.

図3で,表面波モードの分散曲線は,面外波モードの 最も低い周波数バンドより下方にのみ分布し, それより高 い周波数域には存在していないことがわかる.文献²⁾によ ると実体波の分散曲線より高い周波数域では,表面波が消 滅することとなる.また,表面波と水平方向に進行する実 体波とがカップリングして発生する擬表面波も白丸で示し た.B点において,表面波も擬表面波も存在しない領域が $3.0 < L\omega/C_T < 4.0$ に分布していることが確認でき,この 周波数帯では x, y 方向入射に対して遮蔽効果が得られるも のと考えられる.

(2) 三角形ハニカム状に配置された柱列壁

円柱の配置を図4の様に三角形ハニカム状に変更して分 散解析を行った.ユニットセルの離散化は,正方格子と同 じく 16 要素で与えた.図4中に示した第1 Brillouin ゾーン 内の点 A-B-C-A に沿って求めた結果を図5に示す.正方格 子配列の場合と同様に,面外波モードの最初のバンドより 下方にしか表面波の分散曲線は存在していない.また,正 方格子配列に比べ,面外波の2本目の分散曲線が高周波数 側に移動していることがわかり,表面波も擬表面波も存在 しない領域が $3.5 < L\omega/C_T < 4.7$ に分布していることが確

図3 円柱の正方格子状配列における表面波分散曲線

図 4 三角形ハニカム状の配列 (左) と第1 Brillouin ゾーン (右)

図5 三角形ハニカム状配列における表面波分散曲線

認できる.このことから,この周波数帯においては,少な い柱列層数でも高い遮蔽性が得られるものと考えられ,三 角形ハニカム状の配置の有効性が窺える.

参考文献

- 1) Brillouin,L: Wave propagation in periodic structures, Dover Publications, Inc., 1953 2) Yukihiro Tanaka, Shin-ichiro Tamura: Surface acoustic waves
- in two-dimensional periodic elastic structures, PHYSICAL RE-VIEW B, Vol.58, No.12, pp.7958-7965, 1998.