半円シアコネクタの直接せん断特性に関する実験的研究

神戸市立工業高等専門学校 正会員 〇上中宏二郎

近畿大学 正会員 東山 浩士

京都大学大学院 正会員 石川 敏之

1. はじめに

鋼・コンクリート合成床版(以下,合成床版とする)は、高耐久性、ならびに高耐荷性等の特長を有する優れた構造形式であり、様々な合成床版が提案され実用化に至っている¹⁾.本研究では、既報²⁾で提案した半円シアコネクタ(以下,Half pipe shear connector, HPSC とする)を有する軽量化した合成床版(図-1参照)の実用化のため、押抜き試験法³⁾を用いて HPSC の直接せん断特性の把握を目的

としている.

2. 実験方法

供試体一覧を表-1に示す.供試体名は,HPSCの直径 D,ならびに鋼管厚 tから成り立っている.供試体は B300×H400のH形鋼(SS400相当)をウェブ中心で切断し, それらのフランジ部分にD165mm,ならびにD140mmの半 円鋼管をすみ肉溶接をすることにより製作した.また,鋼管 径厚比D/t(逆径厚比:t/D)の範囲は23~60(0.016~0.043) である.測定項目はHPSCのひずみ,コンクリート表面のひ ずみ,ならびに変形である.

3. 実験結果と考察

(1)破壊形式

破壊形式を図-3に示す. HPSC 下部にコンクリートの圧縮 破壊が見られた. また, 他の供試体では, 同箇所に曲げ応 力分布によると思われるコンクリートのひび割れが見られるも のもあった.

(2) せん断力-変位関係

図-4 に D=140mm シリーズの供試体の作用せん断力 (Q=P/2, P:載荷荷重)と相対変位の関係を示す. HPSC の 厚さが 4.0mm 以上(t/D>2.3%)のものでは、おおむね最大荷 重まで傾きが変化しない剛な挙動を示していることがわかる. 一方, t=3.2 mm以下(t/D<2.3%)のものは、肉厚が薄くなる ために比較的柔な挙動を示した.

(3) せん断強度

表-1 に実験結果一覧を示す. 既報²では, 応力分布を HPSCの形状によって変化させたが, 図-4 に示すように, コ ンクリートに添付されたひずみゲージにより三角形分布が確

図-1 HPSCを用いた合成床版のイメージ図

キーワード 半円シアコネクタ,押抜き試験,直接せん断,軽量化,逆径厚比 連絡先 〒651-2194 神戸市西区学園東町8-3 神戸市立工業高等専門学校都市工学科 Tel: 078-795-3540

No.	Tag.	Half Pipe				Conorata	Strongth		
		Diameter	thickness	Ratio		Conclete	Sueligili		
		D	t	D/t	t/D	f_c'	P_{u}	Q_u	M_{u}
		(mm)	(mm)			(MPa)	(kN)	(kN)	(kN m)
1	P165-45	165	4.5	36.7	0.027	30.9	480.2	240.1	13.2
2	P165-50	165	5.0	33.0	0.030	30.9	585.1	292.5	16.1
3	P165-60	165	6.0	27.5	0.036	32.4	733.0	366.5	20.2
4	P140-23	140	2.3	60.9	0.016	30.2	280.3	140.1	6.5
5	P140-32	140	3.2	43.8	0.023	30.2	488.0	244.0	11.4
6	P140-40	140	4.0	35.0	0.029	28.4	688.9	344.5	16.1
7	P140-45	140	4.5	31.1	0.032	28.4	772.2	386.1	18.0
8	P140-60	140	6.0	23.3	0.043	28.4	1047.6	523.8	24.4

認された. したがって, 表内の M_{u} ,ならびに τ_u は, HPSC に 作用するせん断応力 τ の分布を三角形として, 以下のとおり に求めている.

$$M_u = \frac{2}{3}Q_u r \qquad \tau_u = \frac{4Q_u}{rB}$$
(1a,b)

ここで, *Q*_uは最大せん断強度(=*P*_u/2), *r*は HPSC の半径(= *D*/2), *B* は奥行き幅(=300 mm)である.

さらに、図-6 に定式化したせん断強度(*τ_u /f_c*)と逆径厚比 (*t/D*)の関係を示す.同図より, *τ_u /f_c*'は *t/D* に大きく影響を受 けていることがわかる. HPSC の直径によって強度の傾きは 変化するようであるが,以下の式によって HPSC の直接せん 断強度が推定できるようである.

$$\frac{\tau_u}{f_c'} = 78.2 \frac{t}{D}$$
 (for D=140mm) (3)

$$\frac{\tau_u}{f_c'} = 49.2 \frac{t}{D}$$
 (for D=165mm) (4)

ただし, 0.015<t/D<0.045のみ有効である.

4. まとめ

(1) 破壊形式は HPSC 下部のコンクリートの圧縮破壊であった. また, 同場所に HPSC の曲げ変形によるひび割れが

図-6 定式化したせん断強度とt/D

見られるものもあった.

- (2) 得られた作用せん断力-変位関係より、D=140mmの供 試体において、厚さが3.2mm以下(t/D<2.3%)になると柔 な挙動を示した.一方、t=4.0mm以上(t/D>2.3%)では 剛な挙動を示した.
- (3) 定式化したせん断強度(*t_u /f_c*)は逆径厚比(*t/D*)に大き く影響することがわかった.したがって,逆径厚比(*t/D*) を変数とした直接せん断強度推定式を示した.

謝辞:載荷実験の実施に当たっては当時神戸市立工業高 等専門学校に在籍された学生諸君にご協力いただきました. ここに記して心より感謝申し上げます.

参考文献:

- 1) 日本橋梁建設協会:デザインデータブック, pp. 78-82, 2006.4.
- 2) 上中宏二郎, 東山浩士, 石川敏之, 岡本亮二:半円シアコネク タの直接せん断実験, コンクリート工学年次論文集, 日本コンク リート工学協会, Vol. 31, No. 2, pp. 1117-1122, 2009.
- 日本鋼構造協会:頭付きスタッドの押抜き試験方法(案)とスタッドに関する研究の現状, JSSC テクニカルレポート, No. 35, 1996.