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1．Introduction  Figure 4 shows the incremental buckling displacements at  
This paper is the sequential version of previous paper of 

JSCE 2009. On the previous paper, “the nonlinear numerical 
experiments have been carried out for CFRP laminated 
reinforced steel cylinders under axial compression and it has 
been predicted that depending upon the imperfections, the 
buckling mode as well as buckling loads differ. Also, it has 
been suggested that these variations are related with the 
results from the recently developed reduced stiffness 
method(RSM)1)”. Furthermore, on the proceedings of 
CICE2010, “it has been shown that the initial imperfection 
sensitivity is very dependent upon the lamination and the 
angle of fibre orientation, and buckling load carrying capacity 
increases when thin steel shell is reinforced with CFRP2)”. All 
of the above paper includes Reduced Stiffness (RS) analysis 
which predicts the lower bound but not in the case of larger 
imperfefection. To predict the lower bound for the larger 
imperfection sensitive buckling loads, a modified theory has 
been developed in this study and suggested that this modified 
RS theory has the potentiality to provide simple and reliable 
estimation for designing the larger imperfection sensitive 
buckling loads for CFRP reinforced steel cylinders under axial 
compression. 

the buckling loads for the cases of an imperfection 
amplitude = 7.8mm. From this schematic figure, it can be 
observed that the axial wave length becomes sharper for the 
cases of reinforced conditions; this modified mode form 
reflects the influence of the CFRP reinforcement on the 
present numerical experimental models. Again, Fig. 5 shows 
the typical significant changes in mode at buckling as 
compared with the form of initial imperfection in the case of 
axial (y=0) and circumferential (x=L/2).  
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 In Fig.6 an imperfection with b=10 is adopted since this 
mode results in the minimum nonlinear buckling loads. 
Whereas, the linearised critical buckling loads, and the 
nonlinear buckling loads for very small imperfections, exhibit 
considerable dependence upon the angle of fibre orientation, 
the buckling loads for large imperfections show remarkably 
load dependence upon the angle of fibre orientation.  
Figure 7 is based upon the use of larger imperfections having 

a form (b,f) = (10,1) and  are observed to produce buckling 
loads that are lower than  associated with the mode . 
But what is fascinating about the nonlinear results is that 
despite the shape of initial imperfection, the 
incremental mode at buckling, at least when imperfection 
amplitudes are large, is dominated by wave form having 
considerably shortened circumferential and axial wave 
lengths. For the case of tf = 2mm and θ = 90° shown in Fig. 5, 
for example, the incremental mode at buckling for the large 
imperfection = 7.8mm, has through a process of modal 
coupling reached localised shapes closer to that associated 
with (i,j) = (12, 2.26). The lowest RS critical load associated 
with larger imperfection is taken as modified RS load in 
this paper and it is no coincidence that this mode also happens 
to be the same as that for the lowest RS critical load associated 
with  should then be that of for , which is 
depicted as ≈3.19MN in Fig. 7. Making use of this 
modified RS critical load (i.e. the lowest  associated with 
the mode  can be seen to consistently provide 
extremely close approximations of the lower bounds to 
imperfection sensitive buckling loads.  
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2．Method of Analysis 

As shown in Fig. 1, the analytical model, having length L, 
radius of curvature R, shell thickness t, and axial load P is 
adopted here. The shell is considered simply supported and 
corresponding boundary condition is adopted as  
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As shown in Fig.2, the adopted geometrical parameters are 

L/R= 0.512 and R/ts= 4053). On the other hand, tf represents 
the thickness of carbon fibre and is taken as variable 
parameter in the present study, ranging thickness from 0 to ts. 
Also, Young’s moduli for steel, fibre and polymer are taken as 
Es = 205GPa, EF = 235GPa, EP = 3.5GPa. Similarly, adopted 
Poisson’s ratios are μs = 0.3, μF = 0.3 and μP = 0.34. To obtain 
the material constants and shear mudulus for composite 
geometry, Halpin-Tsai equation4) is used. 
 
3．Results and Discussions 
Figure 3 shows the results of numerically experimented 

load-deflection curves for b=10 having imperfection 
amplitudes of 0.8, 2.4, 5.6, 6.4 and 7.2mm and  shown that the 
buckling load carrying capacity is the highest for the 
reinforced condition having θ=90° for all the amplitudes. 

Figure 8 represent the relationship between buckling load 
and the thickness of fibre tf for angle of fibre orientation. Since, 

**
cm yP P<  by modified RS analysis suggests that the elastic 

buckling for moderately large imperfect shells in the use of 
practical civil engineering structures will occur first rather 
than material damage inducing collapse, provides 
consistent and reliable lower bounds over the entire range 
CFRP reinforcements considered.  
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In Fig.9, the linear buckling load P  becomes optimum at 
an angle of fibre orientation 35°. But as the results of 
nonlinear numerical experiments show, with angles of fibre 
orientation 20°, 35° and 70°, the imperfect shell buckling loads 
( ) and the RS critical loads are approximately the same for 
the imperfection amplitude
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Fig.2: Lamination of steel and FRP’s 
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Fig. 5: Increamental wave forms at buckling points 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Conclusion  
  Nonlinear numerical experiment, linear, RS analysis and 
modified RS Analysis have been carried out for CFRP 
reinforced steel cylinders under axial compression. It is 
observed that depending upon the form and magnitude of 
imperfections, the buckling as well as buckling load carrying 
capacities differs. The buckling load carrying capacity is high 
for small imperfection amplitudes but is strongly dependent 
upon the thickness of the adopted reinforcement. Furthermore, 
the modified reduced stiffness theory provides the reliable 
estimation for designing the larger imperfection sensitive 
buckling loads predicting the lower bound for CFRP 
reinforced steel cylinders under axial compression. 
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Fig.3: Load versus displacement curves 
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Fig.8: Various buckling criteria for b = 10, θ=90°
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Fig.9: Effects of fibre orientation for tf = 2

Angle of fibre t f  mm MN MN  MN
orientation 0 17.20 4 12.47 13.70 1 3.35 13.70 2 2.35

1 17.20 2 13.44 13.70 1 3.78 13.70 2 2.89
 θ = 0° 2 13.60 1 14.59 13.60 1 4.24 13.60 2 3.61

4 13.40 1 17.52 13.40 1 5.61 13.40 1 5.14
1 16.80 4 13.43 13.00 1 4.03 13.00 2 2.70

 θ = 90° 2 14.00 5 14.59 12.30 1 4.86 12.30 2 3.19
4 13.10 5 17.56 11.10 1 6.88 11.10 1 4.76

RSLinear Modified RS
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Table 1 Critical loads associated with axual 
half-wave and circumferential full wave numbers
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Fig.7: Load spectra for tf  = 2, θ=90° 
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Fig.6: Sensitivity of buckling load with imperfection 
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