トンネル発破低周波音の坑内伝搬に関する検討

飛島建設	技術研究所	正会員	○小林 真人
飛島建設	西日本土木支社	正会員	筒井 隆規
飛島建設	西日本土木支社		渡邉 博
放送大学	山梨学習センター		山田 伸志

1. はじめに

トンネル工事の発破掘削により発生する低周波音の予測 において、発破に伴い切羽から生じた音波は、1次元の連 続的な閉鎖空間とみなされるトンネル坑内を伝搬するため、 一種の導波管現象と同じように、ほとんど減衰しないでト ンネル坑口に伝達するものとされている¹⁾。環境アセスメ ントに用いられる予測手法²⁾においても、トンネル坑内の 減衰は考慮されておらず、さらに予測の適用範囲も切羽と 評価点の離隔が概ね250m以内の条件とされているため、 これ以上に掘削延長のあるトンネル工事では、低周波音の 予測に適用しにくいなどの課題がある。

この様な背景のもと、筆者らは発破掘削により発生する 低周波音の予測精度を向上させることを目的に、施工中の トンネルにおいて発破による低周波音の長期計測を実施し ながら、坑内を伝搬する低周波音の性状について検討を行 っている³。

本報では、二つのトンネルで得られた低周波音の計測結 果に基づき、総爆薬量と最大音圧レベルの関係、切羽から の離隔と最大音圧レベルの関係を整理した。また、これら の関係から実験式を組み立て、これによる計算値と実測値 との比較を行った結果について報告する。

2. 低周波音の計測概要

計測対象としたトンネルはいずれも掘削工法として NATMを採用し,掘削方式は発破による補助ベンチ付全断 面掘削工法である。表1に対象としたトンネルにおける計 測期間での発破諸元を示す。

図1に低周波音の計測システムを示す。トンネル坑内に 等間隔でP1からP6の計測点を設置した。これらの計測点 は切羽の進捗に応じて適宜移動させた。計測に使用した機 器は、低周波音レベル計:リオン NA-17(Bトンネルの P6とP5はアコー Type6226Hを使用)、データレコーダ: TEAC ES-8である。データはP6の応答をトリガとしたプ リトリガ計測により、サンプリング周波数 1kHz にて全て の計測点の応答を同時にデータレコーダへ記録した。記録 されたデータから,分析器の時定数を Slow として最大音 圧レベルを求めた。表1に示したようにAトンネルは上下 半分割,Bトンネルでは上下半同時で掘削を行っている。 そこで,Aトンネルについては,掘削面積と爆薬量の大き い上半掘削を対象として最大音圧レベルを求めた。

3. 計測結果に基づく坑内伝搬の検討

トンネル坑内での音波の伝搬性状について,筆者らは周 波数別の坑内減衰の検討結果から,切羽から概ね 200m 以 内では坑内減衰が生じないことを報告している³⁾。参考文 献 2)においても同様の調査結果が示されている。そこで, 切羽からの離隔 200m までの実測結果を用い総爆薬量と最 大音圧レベルの関係, 200m から 600m までの実測結果から 切羽からの離隔と最大音圧レベルの関係を整理した。

3.1 総爆薬量と最大音圧レベルの関係

図2に総爆薬量と最大音圧レベルの関係を示す。総爆薬 量と最大音圧レベルは比例関係にあり、概ね7LogWの関 係にあることがわかる。これは、参考文献2)と同様の傾向 である。ただし、雷管の種類による発破定数に相当する総 爆薬量1kgの最大音圧レベルは134dBであり、参考文献2) で示された141dBに比べ小さな値となった。参考文献2) には示されていないが、調査対象としたトンネル断面の大 きさや岩の硬さの違い等による影響が考えられる。

		Aトンネル	Bトンネル
掘削延長(m)	4,878	2,074
標準内空断面積(m	2)	81	80
地山等級		СП	CI
掘削方法		上下半分割	上下半同時
雷管		DS 250ms	DS 250ms
段数		10	10
爆薬		含水爆薬	含水爆薬 (爆発エネルギー大)
総爆薬量(kg)	7~60	45~111

表1 計測期間における発破の諸元

キーワード:トンネル・発破低周波音・最大音圧レベル・坑内減衰

連絡先:飛島建設(株)技術研究所(〒270-0222 千葉県野田市木間ヶ瀬 5472・TEL 04-7198-7553・FAX 04-7198-7586)

3.2 切羽からの離隔と最大音圧レベルの関係

図3に切羽からの離隔と最大音圧レベルの関係を示す。 ばらつきは大きいが200m以遠で、Aトンネルでは概ね -20LogD (D:切羽からの離隔 m),Bトンネルでは-10LogD の坑内減衰が確認できる。既報の参考文献3)で示したよう に、トンネル幅に比べて音波の半波長が短くなる周波数(両 トンネルとも16Hz)より高い周波数成分の減衰が大きく寄 与してるためと考えられる。ただし、Aトンネルに比べて Bトンネルでは坑内減衰が小さくなった。地山への振動伝 搬によるトンネル壁面からの音響放射の違いや、吹付けコ ンクリートや覆エコンクリートの施工面積によるトンネル 空間の吸音条件の違いが原因として考えられるが、詳細に ついては今後の検討課題である。

3.3 坑内減衰を考慮した伝搬予測

上述の検討結果から、坑内減衰を考慮した伝搬予測式を (1)式に示す。図4に(1)式で坑内減衰を考慮した場合と坑内 減衰を考慮しない場合(N=0)での最大音圧レベルの計算 値と実測値との比較を示す。両トンネルとも、坑内減衰を 考慮しない場合には、実測値が小さくなるほど計算値との 差が大きくなり、影響を過大評価することがわかる。一方 で、坑内減衰を考慮することにより実測値と計算値との差 異は概ね5dBの範囲に入る。これらのことから、坑内減衰 を考慮することで明らかに予測精度が向上することがわか り、(1)式の考え方で坑内減衰を考慮した最大音圧レベルの 実用的な予測が可能である。

$$L_{p} = 134 + 7LogW - NLog(D/200)$$
(1)

ここで、L_D:坑内距離 D(m)における最大音圧レベル(dB)、W:総爆薬量(kg)、N:減衰定数(10~20)。

4. まとめ

本報では発破低周波音の計測結果に基づき,総爆薬量と 最大音圧レベルの関係,切羽からの離隔と最大音圧レベル の関係を整理し坑内減衰を考慮した実験式を提案した。今 後は坑内減衰のメカニズムについて理論的検討を行う。

【参考文献】

- (社) 日本騒音制御工学会低周波音分科会編:発破による音と 振動, pp.187-190, 1996.
- 2)船津弘一郎, 坂野良一:トンネル発破工事における振動, 騒音, 低周波音の予測方法,トンネル工学研究発表会論文報告集第2 巻報告(26), pp.215-219, 1992.
- 3)小林真人,渡邉博:トンネル坑内を伝搬する発破低周波音の予 測に関する研究,日本騒音制御工学会研究発表会講演論文集, pp.91-94,2010.

図4 最大音圧レベルの実測値と計算値の比較