帯水砂質地盤におけるシールド地上発進実験 - 影響評価手法の開発 -

大成建設株式会社	正会員	坂井	一雄	青木	智幸
大成建設株式会社	正会員	工藤	直矢	小池	真史

1.目的

筆者らは、シールド機を土被りの無いトンネルのアプローチ部から発進させるシールド地上発進技術を確立 するために、帯水砂質地盤でシールド地上発進実験を実施した¹⁾.その結果、施工管理手法や地盤変状に関す る知見を得ることができた、今後、都市部道路トンネルの掘削工事に対し、本技術を適用するためには、実験 結果の活用とともに、事前にシールド機の掘進が周辺地盤に与える影響を定量的に予測する必要がある.

通常、シールドトンネル施工時の地盤変状を数値解析により予測する場合、トンネル横断面を対象とした二

次元解析が実施される.しかし,二次元解析ではシールド の掘進過程を応力解放率という概念に置き換える手法を 用いるため,切羽土圧や裏込め注入過程などの影響を詳細 に考慮することは難しい.また,シールド地上発進のよう に,掘進に伴って土被りが変化するような施工条件を正確 に表現することも困難である.そこで,本研究では,シー ルド掘進時の施工条件を忠実に反映できる三次元逐次掘 削解析手法を開発し,シールド地上発進実験時の周辺地盤 の掘削影響評価を目的とした再現解析を実施した.

2. 解析条件

2.1 解析モデルと地盤物性値

解析には有限差分法解析コードの FLAC3D を用いた.図 1 に三次元解析モデルを示す.本解析モデルでは,シール ドの掘進過程を忠実にモデル化することを目的にトンネ ルの縦断方向の要素サイズを 20cm とした.

地盤の応力-ひずみ関係は弾完全塑性体とし,降伏条件 はモール・クーロンの破壊規準に従うものとした.物性値 は,実験対象サイトで実施したボーリング調査結果と室内 土質試験結果を参考にして,表1のように設定した. 2.2 シールド掘進のモデル化

砂質地盤の場合,シールド機の掘進により生じる地盤変 状は,切羽前沈下(または隆起),シールド本体通過時沈 下およびテールボイド沈下に分類されている²⁾.そこで, 本解析では,これらの地盤変状を引き起こす要因として考 えられる 切羽土圧, 余掘り,および テールボイドの 発生・裏込め注入過程を図2のようにモデル化した.以下 に各要因のモデル化手法について説明する.

切羽土圧は,切羽前面およびカッターヘッドの外周面方向に節点荷重を与えることでモデル化した.切羽土圧の大きさは,チャンバー内土圧の計測値を参考に決定した.

余掘りは,カッターヘッド(=2290mm)とシールド本

図1 三次元解析モデル

表1 地盤物性値

応力-ひずみ関係	弾完全塑性体			
破壊規準	モール・クーロンの破壊規準			
単位体積重量(kN/m ³)	19.0			
淄州 仮 粉 (MPa)	5.3(GL0m~GL-3m)			
钾注涂致(IVIPa)	深度に比例(GL-3m以深) ^{*1}			
ポアソン比	0.3			
粘着力(MPa)	0			
内部摩擦角(°)	40			
静止土圧係数K ₀ ^{*2}	0.63			
*1二赫库婉封段 博進書】封段妹里太会来に现实				

*1三軸圧縮試験,標準貫入試験結果を参考に設定. *2水圧を考慮.

図2 シールド掘進のモデル化(概念図)

キーワード シールド,地上発進,地表面沈下,側方水平変位,三次元逐次掘削解析 連絡先 〒245-0051 神奈川県横浜市戸塚区名瀬町 344-1 大成建設㈱技術センター土木技術研究所 TEL:045-814-7236 体(=2280mm)の外径差により生じる.カッターヘッ ド通過後,シールド機周辺の地盤は余掘り分の空隙を埋 めるように挙動すると考えられる.そこで,解析ではシ ールド本体到達時に本体と接する地盤の節点に余掘り 分の変位をシールド中心に向かって与えるものとした.

実験では、シールド本体とセグメントの外径差によっ て生じるテールボイド部(片側 65mm)に, セグメント の注入孔から可塑状裏込め注入材を同時注入した.しか し、注入孔がセグメントリングのトンネル軸方向中央付 近にあったため, 1Ringの掘進途中からの注入であった. そのため, 1Ring 掘進中のテールボイド部の状態は, 裏 込め注入前はほぼ空隙であり,裏込め注入開始後に空隙 が充填されたと考えられる.また,各種計測を行いなが ら掘進したため,1Ringの掘進に半日から1日を費やし た.そのため,1Ring 掘進後において裏込め材はほぼ硬 化したと考えられる.これらを考慮して,解析では次の ように裏込め注入過程をモデル化した .裏込め注入前は テールボイド部の状態を空隙とし,裏込め注入時から 1Ring 掘削時点で, テールボイド部に裏込め材をモデル 化したソリッド要素を生成し,硬化前の物性を与えた. 1Ring 掘削後は物性を硬化後の値に変更した.

3.解析結果と考察

図3に25m掘進完了時における地表面沈下コンターの 解析結果を示す.トンネルの直上で局所的に沈下量が大 きい領域が見られる .これはシールドテール通過直後に 空隙が生じる断面の直上であり、大きく地盤の応力が解 放されたことが原因であると考えられる.

図4および図5に断面19mにおけるシールドテール通 過直後の横断方向の地表面沈下,および側方水平変位の 解析値と計測値の比較を示す.なお,側方水平変位はシ ールド中心から横断方向に 2m 離れた位置の値である.

図5 側方水平変位(断面 19m)

シールド直上の地表面沈下量は,計測値が22.7mm であるのに対し,解析値では19.9mm であり,同程度であ る.また,シールドの掘進に伴い沈下を生じるトンネル横断方向の範囲についても,解析で概ね再現できてい る.側方水平変位は,計測値および解析値ともにトンネル天端よりも上部の地盤が最大で2mm 程度掘削側に変 位することがわかる.これは,シールドテール通過直後に,トンネル直上の地盤がトンネル内部に落ち込むよ うに挙動したことが原因であると考えられる.

4.まとめ

シールド掘進時の施工過程を反映できる三次元逐次掘削解析を開発し ,シールド地上発進実験の再現解析を 行った.その結果,実験時の地盤変状に関する計測結果を妥当な精度で再現することができた.今後は,シー ルド地上発進時の周辺地盤の挙動を事前に予測し,近接構造物の防護方法などを検討する際に,本手法を活用 していきたいと考えている.

参考文献

1) 飯島知哉 他:シールド地上発進実験およびその影響評価手法の開発 , トンネル工学報告集 , pp.299-305 , 2010

2) 地盤工学会:地盤工学・実務シリーズ3シールド工法の調査・設計から施工まで, pp.275-279, 2006