高流動コンクリートの 0 漏斗流下時間に関する一考察

日本大学 正会員 〇山口 晋,越川茂雄,鵜澤 正美,全生連中研 辻本 一志 (株) 内山アドバンス 近藤 剛,日本大学(院)島崎 勝広,岩崎 直郁

1. はじめに

フレッシュコンクリートの塑性粘度(η_{Pl})および降 伏値(τ_f)のレオロジー定数はフレッシュコンクリー トの流動性,材料分離抵抗性およびポンプ圧送性の評 価等に重要となる.しかし,これらのレオロジー定数 は一般に大型の各種の粘度計等によるもので試験が簡 便でない欠点を有する.そこで,谷川氏は高流動コン クリートの材料分離抵抗性の評価に採用されている大 型の 0 漏斗流下試験方法で得られる流下時間よりレオ ロジー定数の一つである塑性粘度を求める解析方法 (式-(1))を提示し,モルタルの塑性粘度について検討 し,この方法の有用性を示した.¹⁾しかしコンクリート への適用性については未だ詳細に検討されていない. 特にコンクリートの場合,粗骨材による閉塞が 0 漏斗 流下時間に及ぼす影響について検討した例は全くない.

本研究は、高流動コンクリートに採用されている 0 漏斗流下時間の目視による人為的誤差に着目し、試料 上面にレーザービームを照射し流下時間を測定する方 法について実験検討した.

2. 使用材料および配合

実験に用いた高流動コンクリートは,石灰石微粉末 を用いた粉体系高流動コンクリートを使用した.使用 材料は,表1に示す通りである.

粉体系高流動コンクリートの配合は表 2 に示す通り で、水/セメント比を 50%とし、目標スランプフロー値 が 500~700mmとなる様に高性能 AE 減水剤の量を調整 して決定した.

3. 試験方法

(1) スランプフロー試験方法

スランプフロー試験は、JIS A 1150「コンクリート のスランプフロー試験方法」に準拠した.

(2)流下試験方法

流下試験方法は,JSCE-F 512-199「高流動コンクリ ートの漏斗を用いた流下試験方法(案)」²⁾に準拠し, 図1に示す0漏斗(容量10リットル)を用いた.

(3)流下時間測定方法

レーザービームによる流下時間の測定は,レーザー ビーム(K 社製 高性能レーザー変位計)を0漏斗試料上 面に照射し測定した.なお,流下時間は1/1000秒毎に 測定した.式-(1)に塑性粘度を算出する谷川式を示す.

表 1. 使用材料

セメント	T社製普通ポルトランドセメント					
	密度:3.16g/cm ³ F.	M:6.40				
混和材	A社製 石灰石微粉末					
	密度:2.71g/cm ³					
細骨材	千葉県君津産山砂(~5mm)					
	密度:2.63g/cm ³					
粗骨材	市合却害物产动出动力。	(20~10mm:60%)				
	泉京都育姆産砂石僻石: 	(10~ 5mm : 40%)				
	密度:2.68g/mm ³					
混和剤	B社製高性能AE剤:SP8HVS					

図 1.0漏斗の形状¹⁾

t:流下時間, ρ :試料の密度, G:重力加速度, η :粘性係数, Λ :漏斗勾配

種類	W/C	S/A	単位量(kg/m ³)				高性能	SLF	空気量		
			水	セメント	混和材	細骨材	粗骨材	AE減水剤	AE剤	(mm)	(%)
	(%)	(%)	W	С	F	S	G	(%)			
粉体系	50	48. 5	175 350		85	792	856	0.7	1A	580	2.5
				350				0.8	1A	610	2.8
								0.9	1A	710	3.6

表 2. 配合表

キーワード 高橋加ンクリート、0漏斗流下試験 レオロジー定数 塑料地度 スランプフロー試験

連絡先 〒275-8575 千葉県習志野市泉町1-2-1 日本大学生産工学部土木工学科 TEL047-474-2451

4. 試験結果および考察

4-1. レーザービームによる流下時間曲線

レーザービームによる流下時間曲線を図 2 に示す. この図は, 試料の流下時間を 1/1000 (s) 毎に測定した流 下時間曲線である。この結果によれば, SLF:710mm の場 合, 流下時間曲線は連続となっている. これに対して, SLF:580mm および 620mm の場合, ロート深さ約 45mm の 吐出口付近で連続性に変化が生じている. (〇印部)

そこで、この深さ約45mm付近の流下時間曲線を拡大 し、図 3~5 に示した.この結果、SLF:580mm および620mm の場合、約45mm付近において明らかに不連続となって いることを確認した.このことは、漏斗形状が変化す る吐出口付近で、粗骨材の偏りによる閉塞をしている ことを示すものである.

4-2. レーザービームおよび目視流下時間より算出 した塑性粘度

塑性粘度(η_{Pl})は、式-1に示す谷川式により算出した。表 3 に各流下時間より算出した塑性粘度を示す. この結果によれば、レーザービームの場合、閉塞の有無の 2 通りの計算値比は、0.98~1.00 とほぼ同等であることを示した.このことは、閉塞が極く軽微であることからと考えられる.

この結果に対し目視の場合は、レーザービームに比 して、いずれの場合とも約1.1~1.2と大となることを 示した.このことは、目視の流下時間測定の場合、人 為的変動を伴うことを示唆するものと考える.

5. まとめ

本研究で得られた新しい知見は以下の通りである. (1)流下時間は目視の場合,レーザービームの約 1.1~ 1.2 倍と大きくなる人為的変動を伴うので,レーザ ービームにより測定するのが良い.

- (2) レーザービームの流下曲線の(不)連続性を判定することにより、練り混ぜ直後の主にマトリックス粘性による粗骨材の偏りが、適確に判定できる.
- (3)(2)のことは、単位粗骨材量や高性能減水剤の使用 等を考慮した高流動コンクリートの最適配合の選 定にレーザービームによる流下曲線が有効となる ことを示すものである.

参考文献

 谷川恭雄ほか:セメント系粘性材料のロート試験に 関するレオロジー的考察,セメント系充填材に関す るシンポジウム論文集, pp. 1-6, 1992.12

表 3. 各流下時間より算出した塑性粘度

	流	下時間(s)	塑性粘度 (η թ ι)			
SLF	目視∶t	レー	ザー	日相:+	日月:+ レーザー		
(mm)		全量:T	推定:T'	日九八	全量∶T	推定:T'	
580	12.82	11.32	11.14	195 (1.13)	172 (1.00)	169 (0.98)	
620	10.15	8.31	8.15	151 (1.22)	124 (1.00)	121 (0.98)	
710	6.88	6.30	6. 30	113 (1.09)	104 (1.00)		

2) コンクリート標準示方書[規準編] 2010 年制定,

土木学会, pp355-357, 2010