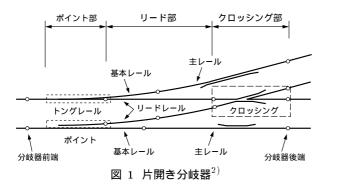
温度応力を受ける分岐器介在レールの振動応答解析

新潟大学大学院自然科学研究科 学生員 阿久津 友宏 新潟大学工学部建設学科 正会員 阿部 和久 新潟大学大学院自然科学研究科 正会員 紅露 一寛

1. はじめに

鉄道軌道のレールは温度変化により膨張・収縮を受ける . 周波数を軸力に換算することとなる . しかし、レールはまくらぎに締結されているため、自由な 伸縮がある程度拘束される.その結果,レールには長手方 向に大きな圧縮・引張の軸力が作用し,座屈・破断を惹起 こす恐れがある.そのため,軸力を管理することは,軌道 の保守上非常に重要となる.

当研究室では,軸力を受ける直線レールおよび曲線レー ルの波動分散解析および振動応答解析を行い,共振周波数 から軸力を換算して求める方法の可能性について検討して 来た1).しかし,分岐器を有するレールについての検討は 未だなされていない.


そこで本研究では温度応力を受ける分岐器介在レールを 対象に加振応答解析を行い,共振周波数と軸力との関係に ついて調べる.

2. 分岐器の構造とその問題点

分岐器とは1つのレールを2つに分ける軌道構造のこと を指す2).分岐器の中でも基本的な片開き分岐器の構造を図 1に示す、図2に示すように、いずれのレールも温度上昇 により軸方向力が作用し,分岐器の前後で1本のレールと 2本のレールが互いに押し合う.このことにより,レール が1本の側は相対的に大きな圧縮を受けることとなり,分 岐器付近では通常の温度変化により発生する圧縮軸力以上 の軸力が作用し、とりわけ座屈の危険性が高くなる3).

分岐器介在レールの解析手法

既往の研究では1),直線軌道を対象にそれをまくらぎに より離散支持された無限周期構造としてモデル化し,軌道 内を伝播する波動モードの分散解析より,軸力と共振周波 数との対応関係について調べた.なお,実際の軸力測定で

は、レールを加振することで共振モードを励起させ、その

本研究で対象とする軌道は,分岐器を含む構造を有して おり,単純な周期構造としてモデル化できない.そのため, 上述のような共振モードを分散関係により抽出することは 不可能である. そこで, 分岐部の構造を力学的に反映させ た有限長軌道モデルを構築し,加振応答解析を行う.

解析対象と解析概要

図1のクロッシング部は基準線と分岐線のレールを互い に交差・剛結させる構造をしており, 先に述べたような大き な圧縮軸力を受ける部材となる. そこで今回の解析ではク ロッシング部について特に注目して検討を進めていく. な お,以降の解析例では,分岐番数は在来線区間において一 般的に用いられている 12 番に設定した. その番数に対応す るクロッシング部の基準線と分岐線との交角(分岐角)は $\theta = 4^{\circ}46'$ となる . 基準線は $250 \mathrm{m}$ をモデル化し , その中間 点にクロッシングを設定した、また、クロッシングの後端 から 125m の分岐線までをモデル化している.

まくらぎは通常区間においては PC まくらぎを 0.6m の 一定間隔で設置する.分岐区間においてはFFU(ガラス長 繊維強化プラスチック発泡体)4)を材料とする分岐まくらぎ を設置基準に合わせた間隔で適宜設置する . FFU を用いた 分岐まくらぎの密度は PC まくらぎの 1/3 程度である.分 岐まくらぎは敷設箇所によってその寸法が異なる.

初期軸力の設定

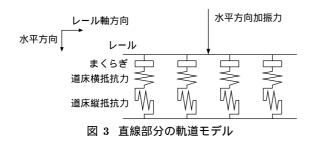

本研究では、レールに作用する軸力と共振周波数との関 係を加振応答解析により求める.分岐器付近ではその構造 ゆえ軸力の分布が一定でない. そのため, 予め静的解析を 行いそれぞれのレール箇所にどの程度の軸力が作用してい るのかを求めておく.その際,レールを線形 Euler ばりでモ デル化し,まくらぎの道床縦抵抗力を線形モデル,道床横 抵抗力を非線形モデルとして解析を行い,温度上昇に伴っ て生じる温度ひずみおよび変形により生じる軸方向ひずみ

図 2 軸力を受ける分岐器概略図3)

Key Words: レール,分岐器,軸力,振動

連絡先: 950-2181 新潟市西区五十嵐二の町 8050 番地 TEL 025 (262) 7028 FAX 025 (262) 7021

から、各要素に生じている軸力を評価する。

分岐器介在レールの加振応答解析

(1) 解析条件

先に求めた各レール要素の軸力を導入し加振応答解析を 行う. ここでは図 3 に示すような 1 次元 Timoshenko ばり でモデル化をしたレールを、所定の分岐角を設けてつなぐ ことで分岐部を再現する.分岐器前後のレールはいずれも 有限長で打ち切るが、道床抵抗のばねを複素剛性として与 えることで,その減衰効果によりはね返り波の共振周波数 への影響が無いように考慮している.応答振幅の測定箇所 は加振位置と同じとして,現場での測定を想定し分岐部分 からいずれも 0.3m 離れた , A. 分岐器前側の基準線 , B. 分 岐器後側の基準線,C.分岐器後側の分岐線の3つのケース について検討する(図2).レールの相対温度は0 100 まで変化させた.各温度におけるレール軸力分布の 下、それぞれのケースについて共振周波数と軸力との関係 を求める.

(2) 解析結果

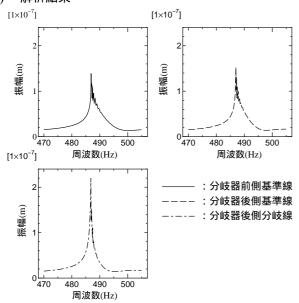


図 4 周波数と応答振幅との関係 (レール温度 50

解析例として,レールの相対温度50 における周波数と 各周波数に対応する振幅との関係を図4に示す.いずれの ケースについても明瞭に共振点が現れていることが分かる. 次に共振周波数と分岐部の軸力との関係を比較したものを 図5に示す.同時に最初のケースを基準点とし,測定箇所

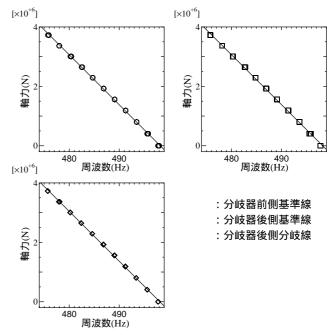


図 5 共振周波数と軸力との関係

を $3.0\mathrm{m}$ ずつ $21.0\mathrm{m}$ まで遠ざけることで分岐部から測定箇 所までの距離の影響も確認した. いずれのケースついても ある軸力に対する共振周波数をプロットした点からほぼ直 線関係が得られ,測定感度は 1MN 当たり 6.0Hz 程度となっ た、なお、分岐部から測定箇所までの距離の影響はほとん ど無い.また,軸力測定に当たっては5tf程度の範囲内での 測定精度が要求されるが,現実的な温度の範囲では測定精 度を十分に満たしている.分岐線側のリードレールを考慮 した場合、その分軸力が高まり軸力と共振周波数との関係 に変化が認められたが、レールの相対温度と共振周波数と の関係はリードレールを考慮しない場合と一致した.

おわりに 7.

今回の解析では 12 番分岐器を対象に, 温度応力に起因 する分岐部の軸力が,理論的には共振周波数から測定可能 であるということが分かった.基準線・分岐線にかかわら ず,分岐部から測定する箇所までの距離にはほとんど依存 することなく,十分な測定精度が得られるという結論を得 た.今後は分岐器の構造をより詳細に反映したモデルによ り,本測定法の妥当性についてさらに検討していきたい.

謝辞

本研究は科研費 (21560499) の助成を受けたものである. ここに記して謝意を表する.

参考文献

- 1) 清水紗希, 阿部和久, 相川明, 紅露一寛: 3次元はり要素を用 いた軸力を受ける軌道系の波動伝播解析,鉄道力学論文集 14 号, pp.75-82, 2010.
 2) 八十島義之助:鉄道軌道,技報堂, pp.203-232, 1967.
- 柳川秀明,片岡宏夫:ロングレールの座屈安定解析を探る, Railway Research Review 2000年11月号, pp.18-21, 2000.
- Sekisui Chemical CO LTD ," エスロンネオランバー FFU セキスイ ", http://sekisui-ffu.jp/index.html.