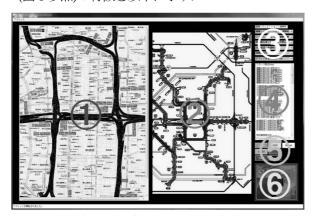
都市高速道路を対象とした BCP 構築支援システムの開発

香川大学[院] 学生会員 〇山脇 正嗣 香川大学 フェロー会員 白木 渡 香川大学 正会員 井面 仁志 ㈱ニュージェック 保田 敬一 正会員


1. はじめに

地震等の災害に備えた事業継続計画(以下 BCP)を構築す るためには、普段から被災時の被害状況を想定した防災訓 練を実施し、現状の対応計画・内容・手順の有効性と課題 を明確にした上でBCPの内容を改善する必要がある.しか し、膨大な交通量を誇る都市高速道路において防災訓練を 実施することは時間的にもコスト的にも困難であると考え られる.

そこで本研究では、人間と車両の行動と防災訓練の実施 状況を計算機上で再現するシミュレーションを行い、都市 高速道路の BCP における対応策の効果と問題点について 容易に検討可能にするための BCP 構築支援システムを開 発する. システムには、車両等の行動を再現する交通シミ ュレーションシステム, シミュレーション結果を格納する ためのシミュレーションデータベース, シミュレーション 環境を自動的に作成するシステムの3つの機能を実装し, 実存の阪神高速道路における BCP 策定支援を行うことを 目指す.

2. 交通シミュレーションシステムの開発

本研究で開発を進めている交通シミュレーションシステ ム ¹⁾(図 1 参照)の特徴を以下に示す.

- ① 環状線内(狭域空間)の画面 ④ 結果表示画面
- ② 環状線外(広域空間)の画面 ⑤ 制御ボタン
- ③ 条件設定箇所
- ⑥ 地図表示画面

図1 交通シミュレーションシステム

(構成エージェントと対象環境)

- ・シミュレーション上で動作するエージェントとして、普 通車,大型車両,緊急車両,避難者,事故車両,高速道路 管理者の6つを設定している.
- ・対象環境として、阪神高速道路において最も交通量が多 く、他の各路線を連結する重要な役割を担う道路領域であ る 1 号環状線(狭域空間:南北 3.5km・東西 2km)と,その周 囲の領域(広域空間:南北 30km・東西 20km)を設定してい る.

(システムの機能)

- ・高速道路上で起こりうる被災状況として、車両事故と道 路破損が再現可能である.
- ・残存車両数等がシステム画面上に数値で表示されるので, 刻一刻と変化する状況を定量的に判断可能である.
- ・シミュレーションの途中においても、エージェントの数 や環境等の条件変更が可能であり、様々な被災状況変化を 想定した災害対応策の検討が可能である.
- ・現状で検討可能なBCP対応策は以下の6つである.
- 1) 救急車両による人命救助活動
- 2) 道路情報板やラジオ等を用いた災害情報発信処理
- 3) 強制的に車両を一般道へ避難させる避難誘導
- 4) 避難者の非常口への避難誘導
- 5) 事故車両の撤去作業
- 6) 緊急避難出口の設置

3. シミュレーションデータベース

交通シミュレーションシステムを用いて、BCP における 対応策の効果と問題点について検討した結果を格納するデ ータベースを、XML(eXtensible Markup Language)を用いて 構築する. XML を採用した理由として, (1)タグを自由に 定義できるので、様々なシミュレーション結果を容易にデ ータベースに追加可能であること,(2)ブラウザさえあれば データベースが稼働すること等が挙げられる.ここで、図 2 に構築したデータベースのシミュレーション結果表示画 面の例を示す.

キーワード: 都市高速道路, BCP, シミュレーション

連絡先: 〒761-0396 香川県高松市林町 2217-20 香川大学工学部 TEL 087-864-2000 FAX 087-864-2032

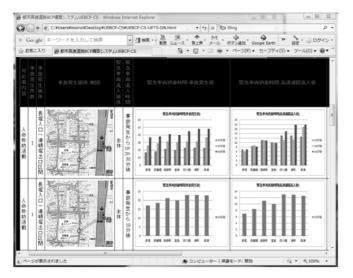


図2 シミュレーション結果表示画面

4. シミュレーション環境作成システム

都市高速道路の BCP を構築する際には、高速道路上の状 況のみではなく,一般道路の状況についても考慮する必要 がある. そのため、一般道路の被災状況についてもシミュ レーションで再現する必要があるが、一般道路は高速道路 よりも遥かに膨大な道路領域が存在するため、その一つ一 つのシミュレーション環境を作成し、被災状況と車両や避 難者の行動を再現することは非常に困難である. そこで本 研究では、電子地図上にシミュレーションを実施するため の環境を自動的に作成し、被災状況と避難者の避難行動を 再現する、シミュレーション環境作成システム(図3参照) を開発した. 以下に、システムの特徴を示す.

- ① 電子地図表示画面 ③ 結果表示画面
- ② 条件設定箇所 ④ 環境作成処理制御ボタン
- ⑤ 避難シミュレーション制御ボタン 図3 シミュレーション環境作成システム

(シミュレーション環境作成モデル)

現状のシステムにおけるシミュレーション環境作成モデ ルでは、(1)電子地図を構成するピクセル値の確認、(2)ピク セル値の出現頻度から一般道路・高速道路・自由領域エー ジェントを作成、(3)各エージェントが周囲を確認した上で 他のエージェントへの変化と消滅を繰り返すという手順で, 地図上の道路認識を行い、避難者が行動する環境を作成す る. 図 4 に、1 号環状線付近の道路領域を対象に、シミュ レーション環境を作成した例を示す.

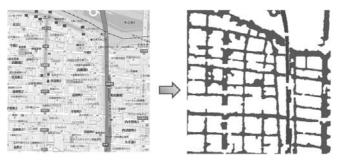


図4 シミュレーション環境作成例

図4より、地図上の一般道路と高速道路が認識され、シ ミュレーション環境が作成されていることが確認される. しかし、認識されていない道路も多数存在するため、より 詳細な環境を作成するモデルの構築が今後の課題である. (避難者の避難シミュレーション)

本システムでは、作成した一般道路領域に避難者を配置 し、避難者の避難シミュレーションを行うことが可能であ る. 避難者の行動モデルについては、図1の交通シミュレ ーションシステムにおける避難者エージェントの行動モデ ルと同様に,原則として,視野内に避難場所を発見した場 合はそこに向かって移動、発見できなかった場合は他の避 難者が多く集まっている場所に移動すると設定している.

(シミュレーション環境の編集)

本システムでは、避難場所と避難者の出現箇所の設定(作 成・追加・変更)や、道路領域の修正(削除・追加)が容易に 行える機能を有しており,刻一刻と変化する被災状況を想 定した避難者の避難行動が再現可能である.

4. おわりに

本研究では、実際の阪神高速道路の BCP 構築を支援する ためのツールとして、防災訓練の実施状況を計算機上で再 現する交通シミュレーションシステム、シミュレーション 結果を格納するためのデータベース、画像認識により地図 上のどの場所でも即座にシミュレーションの実施を可能に する環境を作成するシステムの3つの機能を持つBCP構築 支援システムを開発した. 今後は、各機能の改良と、現状 の BCP 対応策についての詳細な検討を行う必要があると 考えられる.

参考文献

1) 山脇正嗣他:都市高速道路の災害時交通シミュレーショ ンの開発と事業継続計画策定への活用,安全問題研究 論文集, Vol.5, pp.55-60, 2010.11.