不飽和砂質土の非排気-非排水三軸試験のシミュレーション

(現西日本旅客鉄道)京都大学大学院

本研究では、不飽和地盤の力学挙動のモデル化を目 的とし、Feng¹⁾ により提案されている不飽和弾粘塑性 構成式を用いた空気 - 水 - 土連成有限要素法により、 非排気 - 非排水条件下における砂質土の三軸圧縮試験 結果 ²⁾の再現を試みた.

2. 繰返し弾粘塑性構成式の定式化

応力変数として骨格応力テンソル*σ*', を用いた.

$$\sigma'_{ij} = \sigma_{ij} - P^F \delta_{ij} = \sigma_{ij} - \left\{ s u_w + (1 - s) u_a \right\} \delta_{ij} \tag{1}$$

ここで, σ_{ij}は全応力テンソル, P^Fは平均間隙圧で間隙 空気圧 u_a, 間隙水圧 u_w, 飽和度 s によって定義される. **2.1 過圧密境界面**

$$f_b = \overline{\eta}^*_{(0)} + M^*_m \ln \frac{\sigma'_m}{\sigma'_{mb}} = 0$$
⁽²⁾

ここで、 $\bar{\eta}_{(0)}^*$ は相対応力比、 σ'_{mb} は硬化パラメータ、 M_m^* はダイレイタンシー係数であり、次式で表わされる.

2.2 サクションの効果

本研究ではサクションの効果を次式で考慮している.

$$\sigma'_{mb} = \sigma'_{ma}(z) \exp\left(\frac{1+e_0}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right) \left[1+S_I \exp\left\{-s_d\left(\frac{P_i^C}{P^C}-1\right)\right\}\right]$$
(4)

$$=\sigma'_{ma}(P^{C},z)\exp\left(\frac{1+e_{0}}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right)$$
(5)

$$\sigma'_{ma}(z) = \sigma'_{maf} + (\sigma'_{mai} - \sigma'_{maf}) \exp(-\beta \sqrt{z})$$
(6)

ここで、 P_i^c は基準サクション、 P^c は現在のサクショ ン、 S_i は基準サクション P_i^c が作用しているときの強 度増加率で、 s_d は強度変化速度を調節するパラメータ、 z は粘塑性ひずみ速度の第2不変量の累積値である.

2.3 粘塑性流れ則

$$\dot{\varepsilon}_{ij}^{vp} = C_{ijkl} \left\langle \Phi(f_y) \right\rangle \frac{\partial f_p}{\partial \sigma'_{kl}} \tag{7}$$

キーワード 不飽和土, FEM, サクション, 構成式

連絡先

〒615-8540 京都市西京区京都大学 4C クラスターC1 棟 TEL 075-383-3193

○仏本 具切		尔 郁八子八子阮
岡 二三生	フェロー会員	京都大学大学院
木元 小百合	正会員	京都大学大学院
肥後 陽介	正会員	京都大学大学院
狩野 修志	学生会員	京都大学大学院

元〇日

3. 空気 - 水 - 土連成有限要素法

3.1 増分型つりあい式

$$\int_{V} \dot{S}_{ji,j} dV = 0 \tag{8}$$

 $\wedge t \wedge t$

早田

 \dot{S}_{ii} は現在の配置における公称応力速度テンソルである.

3.2 液相および気相の連続式

液相:
$$sD_{ii} + \dot{s}n = -V_{ii}^{W}$$
 (9)

気相:
$$(1-s)D_{ii} - \dot{s}n + (1-s)n\frac{\dot{\rho}^G}{\rho^G} = -V_{i,i}^G$$
 (10)

ここで、nは間隙率、 D_{ii} はストレッチング、 V_i^W 、 V_i^G は液相、気相の見掛けの速度、 ρ^G は気体の密度である. 3.3 水分特性曲線

水分特性曲線については以下の van Genuchten 式を 用いている.

$$s_{e} = (s_{\max} - s_{\min}) \left\{ 1 + (\alpha P^{C})^{n'} \right\}^{-m} + s_{\min}, \quad m = 1 - 1/n' \quad (11)$$

ここで, *α*, *n*', *m*は水分特性に関する材料パラメー タ, *s*_eは有効飽和度を表す.

4. シミュレーション結果

シミュレーションに用いたパラメータを表1に示す. 地盤の弾粘塑性パラメータは排気・排水三軸試験の要素 シミュレーションによって決定した.

表1. 解析に用いた材料パラメータ(非排気 – 非排水)

サクション s (kPa)	10
基準サクション Pi ^c	50
圧縮指数 λ	0.0804
膨潤指数 <i>κ</i>	0.009
初期間隙比 e _o	0.655
初期せん断弾性係数 G ₀ (kPa)	8000
擬似過圧密比 σ' _{mai} /σ' _{mo}	1.2
変相応力比 M _m *	1.18
粘塑性パラメータ m'	40
粘塑性パラメータ C ₀₁ (1/s)	1.0 × 10 ⁻¹⁵
粘塑性パラメータ C ₀₂ (1/s)	2.5 × 10 ⁻¹⁵
内部構造パラメータ σ' _{maf} (kPa)	84.88
内部構造パラメータ β	1
サクションパラメータ S ₁	0.1
サクションパラメータ sd	0.2
初期平均骨格応力 σ'_{m0} (kPa)	106.1
van Genuchten パラメータ α (1/kPa)	2
van Genuchten パラメータ n	1.2
飽和透水係数 kw(m/s)	1.0 × 10 ⁻⁵
飽和透気係数 k ^G (m/s)	1.0×10^{-4}
透水係数形状パラメータ a	3
透水係数形状パラメータ b	2.3
最大飽和度 s _{max}	0.75
最小飽和度 smin	0
HALT ADTHICK OMIN	÷

図1 解析結果(全要素平均)と実験結果の比較 図1にひずみ速度0.1%/min,初期サクション10kPa のケースの実験結果と有限要素解析結果の比較を示す. (a)の応力・ひずみ関係では、初期に偏差応力が大きく 発生し、載荷とともに偏差応力の増加が緩やかになっ て、序々に増加していく様子が再現できた. (b) の軸 ひずみ・体積ひずみ関係では、体積ひずみが 2%を超え たあたりで体積ひずみの発生量が小さくなっているが, 試験結果では大きく増加している.また、図2に解析 より得られた 3 次元コンター図を示す. すべて軸ひず み0,3,9,15%時における分布を示す. (a)の間隙 水圧分布より、載荷初期では供試体中央部での間隙水 圧が高く供試体表面は低くなっている. その後,供試 体上部と下部に広がり,上下部での間隙水圧が高くな っている. (b)の平均骨格応力分布図より,供試体中 心部での値が低いことが分かる. (c) の蓄積粘塑性ひ ずみ分布図より、供試体中心部においてひずみが大き くなっている. (d) の体積ひずみ分布図より,供試体 上下部において体積圧縮ひずみが大きくなっている.

5. まとめ

応力 - ひずみ関係と間隙空気圧 - 軸ひずみ関係の再

現はできたが、間隙水圧 - 軸ひずみ関係では間隙水圧 が試験結果よりもシミュレーション結果の方が大きく 上昇している.これは、試験結果では間隙水圧は供試 体下部中央で計測しているが、供試体内で分布してい ることが考えられる.また、3次元解析を行うことで、 応力、ひずみの分布を明らかにすることができた.

参考文献

- Feng, H: Multiphase Deformation Analysis of Elastoviscoplastic Unsaturated Soil and Modeling of Bentonite, Doctoral Thesis, Graduate School of Engineering, Kyoto University, 2007.
- 2) 福谷準也:不飽和砂質土の排気・非排気条件下における 強度・変形特性,京都大学大学院修士論文,工学研究科, 2008.