不飽和砂質土の非排気・非排水条件下における繰返し三軸試験

	京都大学大学院	学生会員	○狩野	修志
	京都大学大学院	フェロー会員	岡	二三生
	京都大学大学院	正会員	木元 /	小百合
	京都大学大学院	正会員	肥後	陽介
(現西日本旅客鉄道)	京都大学大学院	正会員	松本	真明

1. 研究の目的および背景

不飽和土の非排気・非排水条件下における力学挙動 については十分解明されていない。本研究では砂質土 を用いて非排気・非排水条件下で繰返し載荷試験を行 い,その強度・変形特性について調べた。また,従来 三軸試験装置のペデスタルに用いられているセラミッ クディスクの代わりに排水性の高い微細多孔質膜 ¹⁾を 用い,その影響について検討した。

2. 試験の概要

2.1 試験用土試料

本研究では淀川堤防の改修に用いられる砂質土を用

いた。試料の	表1 物理特性	生	100
物理性性を実	砂分(%)	73.2	80
加生的正色致	シルト分(%)	14.7	₩ 60 +
1に、粒径加	粘土分 (%)	12.1	
	最大粒径 (mm)	2	(現 ⁴⁰) (現
積曲線を図 1	平均粒径 (mm)	0.29	20
	均等係数 U₀	71.4	
に示す。	土粒子密度 (g/cm ³)	2.661	1E-3 0.01 0.1 1 10 粒径(mm)
2.2 試験方法			図1 粒径加積曲線

最適含水比である 13.7%に調整した試料をモールド に入れ,高さ 100 mm,直径 50 mm,締固め度が 85%と なるように静的締固め機を用いて締固め,供試体を作 製した。作製した供試体を三軸試験機に設置し,セル 圧 300kPa,間隙空気圧 $u_a \ge 200$ kPa,間隙水圧 $u_w \ge$ 所定のサクション $s(=u_a - u_w)$ となるように与え,排水/ 吸水過程を行い,その後せん断試験を行った。

本試験ではセル内にギャップセンサーを設置し,供 試体の側方変位を測定し,体積変化を算定している。 間隙空気圧は供試体上部にポリフロンフィルターを, 間隙水圧は供試体下部に微細多孔質膜を挟んだペデス タルを用いることで分離して計測している。間隙空気 圧はより正確に測定するために供試体上部のキャップ で計測しており,非排気試験を行う際は,空気作動式 バルブにセル外から空気圧を与えてバルブを閉じる。 本研究では、応力変数として骨格応力 $\sigma'_{ij}^{2}^{2}^{3}$ を用いている。平均骨格応力 σ'_{in} は次式で定義される (1)

$$\sigma'_m = \sigma_m - P^F = \sigma_m - \{(1 - S_r)u_a + S_r u_w\}$$

ここで、 σ_m は平均全応力、 P^F は平均間隙圧²⁾、 S_r は 飽和度、 u_a は間隙空気圧、 u_w は間隙水圧である。

2.3 微細多孔質膜

本研究では微細多孔質膜を2重にして試験を行った。

膜とセラミック ディスクの仕様 を表2に,写真 を図2に示す。

2.4 試験条件

表2 微細多孔質膜とセラミックディスクの仕様				
	微細多孔質膜	セラミックディスク		
A.E.V.(kPa)	250	200		
厚さ(mm)	0.14	7		
直径(mm)	20	42		
透水係数(cm/sec)	2.1~4.1×10 ⁶	1.5~1.8×10 ⁷		

図2 試験に用いたペデスタル (a)セラミックディスク付き ペデスタル (b)微細多孔質膜装着時の ペデスタル

(b)微細多孔質膜

ひずみ速度 0.1%/min, 応力振幅 50kPa でせん断試験 を行った。本報では初期サクション 10,50 kPa の結果に ついて示す。また、2.2 節で述べたようにせん断試験前 に初期サクションで排水/吸水過程を行った。表 3 に排 水/吸水過程前後の供試体諸量を示す。

(a)セラミックディスク

表3 排水/吸水過程前後の供試体諸量

1	排水	/吸水道	祖前	排水/	吸水過	程後	王密時間
	w (%)	Sr(%)	е	w(%)	Sr(%)	е	(hour)
微細多孔質膜 サクション 10 k P a	13.6	53.8	0.672	13.2	53.7	0.651	120
セラミックディスク サ クション 10k Pa	12.9	53.0	0.645	12.8	53.5	0.632	24
微細多孔賞膜 サクション 50 kPa	13.7	55.1	0.659	12.6	52.8	0.630	48
セラミックディスク サクション 50kPa	13.1	52.7	0.662	12.7	52.5	0.642	24

3. 試験結果

3.1 初期サクション 10kPa

図3にひずみ速度0.1%/min,応力振幅50kPa,初 期サクション10kPa,微細多孔質膜とセラミックディ スクのケースの試験結果を示す。軸ひずみ・体積ひずみ 関係をみると、両者ともほぼ同様の挙動を示した。間

キーワード 不飽和土,繰返し三軸試験,サクション 連絡先 〒615-8540 京都市西京区京都大学 4C クラスターC1 棟 TEL 075-383-3193 隙空気圧と間隙水圧については、セラミックディスク の場合は初期には上昇するが 100 (min)以降はほぼ一 定となっているのに対し、微細多孔質膜の場合は水圧、 空気圧とも上昇し続けた.また、微細多孔質膜のケー スでは間隙水圧の上昇量が間隙空気圧の上昇量よりも やや大きいため、サクションは若干減少している.図 3(c)に示す骨格応力径路では、間隙圧力の上昇により、 微細多孔質膜のケースのほうが平均骨格応力の減少が 大きい.

3.2 初期サクション 50kPa

図4にひずみ速度0.1%/min,応力振幅50kPa,初 期サクション50kPaのケースの試験結果を示す。軸ひ ずみ・体積ひずみ関係をみると、微細多孔質膜の方が体 積ひずみは圧縮側に大きく出た。間隙空気圧と間隙水 圧は、微細多孔質膜のケースでは間隙空気圧が上昇し て、間隙水圧が間隙空気圧に漸近しサクションが減少 していった。セラミックディスクのケースでは間隙空 気圧は上昇せず、間隙水圧が上昇することでサクショ ンが減少した。応力経路は初期サクション10kPaのケ ースと同様に、微細多孔質膜の方が平均骨格応力の減

4. まとめ

初期サクション 50kPa のケースの方が圧縮体積ひ ずみの発生量が小さく、サクションによる強度増加が 確認できた。また、微細多孔質膜のケースのほうがセ ラミックディスクのケースに比べて、せん断中の間隙 水圧、間隙空気圧の上昇が大きいという傾向がみられ た。

謝辞

本研究は「平成 22 年度国土交通省道路政策の質の 向上に資する技術研究開発」の一部として実施した。 記して謝意を表します。

参考文献

- 西村友良,古関潤一:土木学会第62回年次学術講演会講 演概要集,3-009, pp.197-198,2007.
- 2) Jommi, C.: Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Tarantino, A. and Mancuso, C. eds., Balkema, pp. 139-153, 2000.
- 3)Oka, F. et al.: Proc. 1st European Conference on Unsaturated Soils, Durham, pp. 735-741, 2008.
- 4)松本真明:平成 21 年度土木学会関西支部年次学術講演会 講演概要集,Ⅲ-6,2009.
- 5) 松本真明:第44回地盤工学研究発表会,平成21年度発表 講演集, pp. 657-658, 2009.