-237

地盤反力によるせん断変形の増加を考慮した重力式岸壁の簡易耐震照査法に関する研究

パシフィックコンサルタンツ株式会社 正会員〇宮下健一朗 国土技術政策総合研究所 正会員 長尾 毅

1. はじめに

現行の港湾基準は性能規定型の設計体系となっており、レベル1地震動に対する岸壁の設計を行う場合は、岸壁天端 の残留変形量の照査が必要となる.残留変形量を精度良く算出する方法としては2次元地震応答解析による方法などがあ るが、計算負荷が大きく設計実務には適していない. そこで港湾基準では、付属書において岸壁の許容変形量をパラメ ータとした照査用震度による設計法が示されており、間接的に残留変形量の照査を行うことができるようになっている. しかしながら、この設計法は従来の震度法による設計法を踏襲した形となっており、実際の変形メカニズムに即した設 計法ではなく、照査の精度に問題を残している.本研究は、重力式岸壁のレベル1地震動作用時を対象として、計算負荷 が少なく変形メカニズムに即し、精度良く残留変形量を算出できる簡易耐震性能照査方法について検討を行ったもので ある.なお、レベル1地震動作用時を対象としているため、液状化が起こる場合は対策が実施されていることを前提とし て,液状化は発生しない条件で検討を行っている. 崩壊線

 $\tau_{xyf} = \sqrt{\tau_f^2 - \tau_d^2}$

 $\tau_f = \sigma_m \sin \phi$

2. 重力式岸壁の変形メカニズムと簡易耐震性能照査方法の概要

図-1に2次元地震応答解析で得られた重力式岸壁の変形図を示す.2次元地 震応答解析には解析コード FLIP¹⁾を使用している.重力式岸壁は直下地盤が図 -2に示すようにせん断による変形及び傾斜による変形を起こして全体が変形し ており、震度法で想定しているいわゆる滑動によって変形していないことが分 かる. そこで本研究における簡易耐震性能照査方法はせん断変形量と傾斜によ る変形量をそれぞれモデル化し、足し合わせることによって、全体の変形量を 求めるモデルとする.

3. せん断による変形量のモデル化

2 次元地震応答解析による重力式直下地盤のせん断応力 τxyとせん断ひずみγxyの履歴曲線を図-3に示す. 図には式 (1)で求めた静止土圧状態における水平成層地盤での て xv の

上限値 *τ xyf*も示している. ここに, *τ f*: 最大せん断強度(kN/m²), *τ d*: 軸差応力(kN/m²), σ_m : 拘束圧(kN/m²)、 ϕ : せん断抵抗角(°)、 K_0 : 静止土圧係数(=0.5)、 σ_v : 有効上載圧 (kN/m2)である.図より、2次元地震応答解析の cxyは水平成層地盤での cxyfに比べ非常 に小さい値で頭打ちとなっていることが分かる.これは、2次元地震応答解析では重力 式岸壁からの大きな地盤反力により caが増加し、式(1)で求められる cxtが小さくなるた めと考えられる. そこで本研究では、まず重力式直下を想定した地盤モデルの1次元の 地震応答解析を行い,各要素の τ xv- γ xv履歴曲線を整理する.次に地盤モデルの各 要素の τα時刻歴をモデル化して式(1)に式(3)の代わりにこれを代入し、 τ xrt時刻歴 を求める. 最後に, 求めた τ_{xxf} を上限値とした場合の $\tau_{xy} - \gamma_{xy}$ の骨格曲線を整理し, τ_{xy} 1 次元の地震応答解析における rxy が時刻歴の中で過去最大になった時に図-4 に示 すように、1次元の地震応答解析におけるひずみエネルギーとエネルギーが等しく なる γxyを求め、 τ d増加による γxyの増加分を求める.また、地盤反力によって τ d だけではなく てxyも増加するため、各要素の地盤反力による増加 てxy時刻歴もモデル 化し、式(4)によって、τ_{xv}増加による運動エネルギーを求め、これと等しいひずみ

重力式岸壁残留変形図(倍率10倍) 図-1 (1)(2) $\tau_d = 0.5(1 - K_0)\sigma_v$ (3) (b) 傾斜によ (a) せん断に $U = \frac{1}{\rho H^2} \sum \tau_{xy} \left(\sum \tau_{xy} \right)$ (4) よる変形 る変形 直下地盤の変形モード 図-2 20 co(kN/m²) -20 -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 図-3 履歴曲線 1 次元の地震応答解 析で得られたひずみ エネルギー(1) 増加γ» ①と等しい

図-4 増加 γ_w

 γ_{xy}

連絡先 〒206-8550 東京都多摩市関戸 1-7-5 パシフィックコンサルタンツ(株)港湾部 TEL042-372-6180

エネルギーの増加が起こるとして、 *τ*_{xy}増加による *γ*_{xy}の増加分を求める.ここで、*U*:運動エネルギー(kNm). *ρ*:単 位体積質量(t/m³), H: 地盤モデルにおける要素高(m)である. 有効上載圧

111 般

反力

-) 矩脈

-20

図-7 土圧比較

4. 傾斜による変形量のモデル化

傾斜による変形量は、図-5 に示すように、直下地盤各要素の傾斜角 の曲率を求め、曲率を2階積分することにより求める(式(5)).曲率 は直下地盤に働く σ_v をモデル化し、 岸壁中心周りの 岸壁幅内の σ_v によ 図-6 地盤内応力 るモーメントから求める.対象としている変形量は残留変形量であるた め、式(6)に示すように最大地盤反力作用時の曲率から初期勾配で増加モーメント分の曲率を 減少させて求める. ここに, Ur: 傾斜による変形量(m), ørss: 残留時の傾斜角の曲率(1/m), *ϕ max*:最大地盤反力作用時の傾斜角の曲率(1/m), *ΔM*:最大地盤反力作用時の増加モーメン ト(kNm), Em: 初期の地盤弾性係数(kN/m2), Emax: 最大地盤反力作用時の地盤弾性係数(kN/m2), I:岸壁中心まわりの岸壁底面の断面2次モーメント(m4)である.

5. 地盤内応力のモデル化

上記までの変形量を求めるにあたって必要となる直下地盤の 地盤内応力は、図-6に示すように、地盤反力及び重力式背後の埋 立地盤の有効上載圧によって水平成層地盤からの増分が発生す るとし、 σ_y 、 τ_{xy} は式(8)式(9)の Bussinesg の弾性応力解によって、 σ_x は静止土圧として式(10)により求める.ここで、p: 地盤反力及 び埋立地盤の有効上載圧(kN/m²)である.

6. 地盤反力のモデル化

地盤反力は土圧,岸壁自重及び慣性力,動水圧の力の釣り合い から三角形もしくは台形分布として求める. 土圧は2次元地震応 答解析結果との見合いから、物部岡部土圧をやや修正し、崩壊角

を式(11)によるせん断抵抗角によって求め、崩壊角内の土塊の滑り線上の抵抗角を式 (12)とした時の物部岡部土圧を用いることとした.地盤反力最大時の2次元地震応答 解析とモデルの土圧の比較を図ってに示すが、概ねモデルは2次元地震応答解析を再 現できている.また、この方法によるモデル土圧の崩壊角は35°程度と比較的小さ い値となったが、この結果は図-1に見られる崩壊角に近い結果となっている.

7. モデルの精度比較

図-8 に水深-11m岸壁におけるモデルと2次元地震応答解析結果のせん断変形量と 傾斜変形量の比較を示す. せん断変形量においてはモデルは2次元地震応答解析結果 を良く再現出来ているが,傾斜による変形量は2次元地震応答解析の結果に比べて大 きく、過大評価する結果となった.2次元地震応答解析結果の傾斜変形量は地盤の深 い位置で一度陸側に変形するが、モデルはこれが再現できておらず、過大評価の原因 となっている.2次元地震応答解析結果が陸側に一度変形するのは岸壁背後の埋立地 盤の有効上載圧によって、陸側に大きく傾くためであり、本モデルではこの効果を取 り入れていないため過大評価となっている. 図-9 に水深-7.5m, -11m, -14.5mに 2 種類の地盤条件(地盤の固有周期 0.8 s と 1.2 s) を組み合わせた 6 断面に周波数特 性の異なる5つの波形を入力した時の2次元地震応答解析結果と本モデルのせん断

変形量,傾斜変形量,全体の変形量の比較図-9を示す.傾斜変形量の精度が低く全体変形量の精度の低下を招いている. 傾斜変形量の精度の向上が今後の課題である.

参考文献

1) Iai, S.et al. : Strain Space Plasticity Model for Cyclic Mobility, Report of The Port and Harbour Research Institute, Vol.29, No.4, pp.27-56, 1990

臣

03

(5)

(6)

図-5 傾斜による変形量

 $\phi_r = \sin^{-1}(0.9\sin\phi)$

 $Ur = \iint \phi_{res} dy$

A

$$\sigma_x = K_0 \sigma_y \quad (10)$$

$$\phi_{mo} = \sin^{-1}(0.65\sin\phi)$$
 (11)

