津波発生時におけるフラップゲート式防波堤の挙動解析

健輔	○中島	学生会員	京都大学大学院
望	米山	正会員	京都大学防災研究所
真揮	三輪	学生会員	京都大学大学院

1. はじめに

津波や高波などの被害から陸地を守る対策として, 防波堤が挙げられる.しかし従来の防波堤は巨大な構 造物のため,建造や維持に多額の費用がかかり,環境 や景観を損なうという問題点がある.そのような事情 から可動式防波堤の開発が進められており,そのひと つにフラップゲート式防波堤(以下フラップゲート) がある.本研究では,フラップゲートに対し,流体剛 体連成解析手法を用いて解析を行う.まずフラップゲ ートの挙動解析を既存の実験と比較することで手法の 妥当性を検証する.その後,実地形にフラップゲート を設置した解析を行い,防災効果を確認する.

2. フラップゲート式防波堤

フラップゲート式防波堤とは,港口部などに設置す る固定された一端を回転軸とする扉体により津波を防 ぐ可動式防波堤である.通常時は,海底に固定されて いるが,津波来襲時には浮力によって浮上し,港外と 港内の水位差や外力の影響で起立し,止水壁となる.

(図1参照)

3. 数値解析手法の概要

本研究では,水面挙動の予測にVOF(Volume of Fluid) 法,境界形状の取り扱いに FAVOR(Fractional Area Volume Obstacle Representation)法を用いた非圧縮流 体解析手法を使用した.基礎方程式のうち,連続方程 式および流体体積の移流方程式を以下に示す.

$$\frac{\partial \gamma^{v}}{\partial t} + \frac{\partial \gamma_{i}^{a} \overline{u}_{i}}{\partial x_{i}} = 0 \qquad \frac{\partial \gamma^{v} F}{\partial t} + \frac{\partial \gamma^{a}_{i} F \overline{u}_{i}}{\partial x_{i}} = 0$$

ここで、 u_i :流速の各方向成分、 γ^v :計算セルの空隙 率、 γ_i^a :計算セル境界の開口率、F:計算セルの流体 充填率(=セル内の流体体積/セル内の空隙体積),:レ イノルズ平均量である.また,乱流の評価式には k- ε モデルを用いた.

剛体挙動の解析に関し ては,剛体を計算セルの 開口率 γ^{a}_{i} および空隙率 γ^{v} の時間変化によって 存在を認識させる (図 2 参照).

計算セルと剛体の共 通部分(これをセグ

図2 剛体の取り扱い

メントと呼ぶ)の表面積と体積を計算するため,剛体 の位置および姿勢を計算セル内のセグメントを構成す る頂点座標を調べ,ベクトル解析を用いてセグメント の形状を厳密に把握することでセグメントの面積及び 体積を求め,計算セルの空隙率を計算する. 剛体の運動は,重心の運動と重心まわりの回転運動に

分解して考え,重心の運動はニュートンの運動方程式, 重心まわりの回転運動は回転軸に慣性主軸(1,2,3軸) を選び,オイラーの運動方程式に基づいて計算する. しかし本研究で行うフラップゲートの挙動解析では, 重心の運動を考えず,一軸回転(Y軸回転)のみの剛 体として扱うため,以下の回転運動のみを計算する.

$I_{22}\phi_2 - (I_{33} - I_{11})\omega_3\omega_1 = N_2$

ここで I_{ii} は慣性モーメントIの ii 成分, ω_i は i 軸まわ りの角速度, ϕ_i (= $d\omega_i/dt$)は i 軸まわりの角加速度, N_i は i 軸周りの外力モーメントである.

剛体に作用する外力は,重力,流体からの圧力および粘性力である.流体からの圧力および粘性力の和を F^{seg}とし,F^{seg}による i 軸まわりのモーメントをN_i^{seg}す ると次のように求められる.

$$F_g = mg + \sum_{segment} F^{seg}$$
 $N_i = \sum_{segment} N_i^{seg}$

キーワード:津波 防波堤 フラップゲート 流体剛体連成解析 連絡先 〒611-0011 京都府宇治市五ヶ庄京都大学防災研究所都市耐水研究室 米山望 TEL:0774-38-4136 本解析手法では、流体の動きは流体解析より求めた圧 カおよび粘性力として剛体に反映され、剛体の動きは 計算セルの空隙率 γ^v およびセル境界の開口率 γ_i^a の時間 変化として流体に反映される.

4. 解析手法の精度検証

既存の水理実験を再現する解析概要図を図3に示す.

図3 解析概要図

水路幅は 1.0m で,模型縮尺は 1/30 である.解析では 沖側を造波境界,岸側を反射境界とし,造波境界より 周期波を発生させ,A,B,Cの3点での水位変動およ びフラップゲート扉体角度を測定した.水位変動の比 較を以下の図4.図5に示す.

図 5 扉体角度比較

経過時間(秒)

図4によりフラップゲート前後のB地点,C地点の両 位置において水位変動はほぼ一致していることが分か り,図5より扉体角度も一致していることが分かる.

5. 実地形でのフラップゲート挙動解析

10 0

実地形の適用として,北海道奥尻島藻内地区を対象 にフラップゲートを設置した地形での挙動解析を行う. その解析結果を図6に示す.

図6において左側が解析領域全体図,右側がフラップ ゲート中央位置による断面図である.津波が衝突する

図6 実地形におけるフラップゲート挙動

ことで扉体が立ち上がり,直立する様子が分かる.また 300 秒時点の図より岸側への流入が防がれていることも分かる.フラップゲートの有無による岸側での水位変動の比較を図7に示す.

図7 フラップゲートの有無による水位変動グラフ

図7の上図に示す3点におけるフラップゲートの有無 による水位変動の違いが下図のグラフである.これよ りフラップゲートによる津波に対する減災効果がある ことが確認できた.

6. 終わりに

-444-

本研究では、フラップゲートの挙動解析を行った. 既存の実験との比較により、フラップゲートの挙動解 析における流体剛体連成解析手法の妥当性を検証した. そして実地形に対して同手法を用いたフラップゲート 解析を行うことで、フラップゲートを設置することで の防災効果を確認した.