下水道管渠における空気流動・空気圧変動解析モデル

- 愛媛大学大学院 学生員 〇松本健太
- (株)荒谷建設コンサルタント 正会員 重田尚秀
 - 南海測量設計(株) 正会員 友近栄治
 - 愛媛大学大学院 正会員 渡辺政広

1. はじめに

近年,ゲリラ豪雨と呼ばれる集中豪雨が多発し,各地の下水道流域では,計画を大きく上回る量の雨水が下水道 管渠網へ流入し,管渠網内の空気が圧縮されることに起因するマンホール蓋の浮上・飛散現象を伴う流出がしばし ば現れるようになってきている.このマンホール蓋浮上・飛散現象は,人命をも失いかねない危険な現象であり, こうした現象を伴う下水道管渠の雨水流出を精度高くシミュレートできる雨水流出解析モデルすなわち下水道管渠 における空気・水二層流流出解析モデルの開発が喫緊の課題となっている.

本報告では、空気・水二層流流出解析モデルのサブモデルである、下水道管渠網における空気圧変動・空気流動 解析モデルを提案するとともにその適用性について下水道管渠模型を用いた空気流動実験を行って検討した結果を 述べる.

2. 空気圧変動・空気流動解析モデルの流れの基礎式

下水道管渠における空気の流動は、次式 (1)~(3)で記述できるとする.ここに、空気の流れは等エントロピー流 れであるとし、取付管からの空気の流入出を考慮し *m*

ここに、V:風速、A:空気流動断面積、ρ: 空気密度、p:空気圧力(絶対圧)、γ:空気の

比熱比 (=1.4), R: 径深, f: ダルシー・ワイスバッハの摩擦損失係数, m: 単位距離当たりの排出空気質量流量, p_0 : 大気圧, ρ_0 : 大気密度, x: 距離, t: 時間.

3. 基礎式の数値計算法

空気流動の基礎式 (1)~(3) を連立させ,特性曲線法により数値計算する.特性曲線式および特性方程式は,次式のように表わされる.

$$\frac{dx}{dt} = V \pm a \quad (4), \quad \frac{dV}{dt} \pm \frac{a}{\rho} \frac{d\rho}{dt} \pm \frac{a}{A} \left(\frac{\partial A}{\partial t} + V \frac{\partial A}{\partial x}\right) + f \frac{1}{4R} \frac{1}{2} |V| V - m \frac{V \mp a}{\rho A} = 0 \quad (5), \quad a = \sqrt{\gamma \frac{p}{\rho}} \quad (6)$$

キーワード マンホール蓋,取り付け管,空気・水二層流,空気流動解析,下水道管渠,都市流出 連絡先 〒790-8577 松山市文京町3番 愛媛大学工学部環境建設工学科水環境工学研究室 089-927-9828

4. 空気圧変動・空気流動解析モデルの適用性の実験的検討

上述した空気圧変動・空気流動解析モデルを、下水道管渠模型(図-2)を用いた空気流動実験に適用し、実験結果と 解析結果を対比して、本モデルの適用性を調べた.

下水道管渠模型は、上流端圧力タンク(直径 0.2m、高さ 0.4m)とこれに接続する塩ビパイプ製の下水道管渠(直 径 30mm, 長さ

200

No.3

(7)

35

No.2

5.4m) からなり, 圧力タンク 圧力タンク内およ び下水道管渠の数 エアコンプレッサ No.1 か所に圧力センサ -を取り付けて圧 125 センサ 力変動を測定した. No.0 なお, 摩擦損失

係数 f の評価式には, 次式1)を採用した.

 $f = 16/R_{e}$: 層流

$$f = 4 \times 0.0625 \left/ \left[\log_{10} \left(\frac{1}{3.7} \frac{\varepsilon}{D} + \frac{5.74}{R_e^{0.9}} \right) \right]^2 : \text{IL} \tilde{\mathcal{K}} \quad (8)$$

図-3 に示す圧力変動ハイドログラフを上流端圧力タンクに与え、 下水道管渠下流端を大気中に開放しておき、空気が下水道管渠を 流動する空気流動実験を行った.実験結果を解析結果と対比して, 図-4~図-6に示す.

これらより、風速が 0~10m/s の範囲で、解析結果は下水道管渠 内における空気圧力・空気流動の時間的・場所的変動をよく再現 できていることが分かる.

5. おわりに

下水道管渠の空気・水二層流流出解析モデルのサブモデルであ る,空気圧変動・空気流動解析モデルを提案するとともにその適 用性について実験的検討を進めた. その結果, 提案した解析モデ ルが実流域の下水道管渠に適用できるであろう見通しが得られた.

参考文献

1) P. H. Oosthuizen and W. E. Carcallen: Compressible Flow, McGraw-Hill, pp. 231~233, 1997.

