
ADCP を用いた塩水遡上時の流速分布の観測

富山県立大学 正会員 〇手計 太一

1. はじめに

河川感潮域におけ る塩水浸入は,治水, 利水、環境のいずれに おいも複合的に様々 な問題を引き起こし ている. 塩水浸入の混 合形態については, 古 くから多くの研究が 実施され,大きく3種 類に分けられている. 特に, 塩水楔は潮位差 の小さい日本海側の

床高の縦断変化

河川で多く観測されている. それらの観測方法は主に縦 断・横断方向に塩分濃度や流速を連続的に計測するもの である. また、密度流に関する理論的研究、数値実験や 実験室レベルでの研究についても,数多くの既往研究が ある. しかしながら, 実際の河川における塩水遡上にお いて、細かい時間分解能でかつ連続的な物理諸量の観測 事例は極めて少ないのが実情である. 本稿は, 超音波ド ップラー多層流向流速計(ADCP)を用いて塩水浸入時の 鉛直方向の流速分布を観測したいくつかの事例を報告 するものである.

2. 観測概要

本研究では、富山県東部に位置する庄川の右支川の一 つである内川(射水市)を対象に観測を実施した. 流路延 長は 2.2km, 庄川の分岐点から奈呉ノ浦までの西内川は 0.7km, 富山新港から奈呉ノ浦までの東内川は 1.5km で ある. 本研究では, 西内川における塩水浸入を観測した. 西内川には、浄化用水として庄川から合計 2.9m³/s を導 水している. ただし, 9時から17時までの運用であり, その他の時間帯は自然流下させている. 塩水が遡上する のは17時から翌日9時までの間であるため、本稿では この時間帯の流速分布を示す.

表-1 ADCP の計測設定条件

Workhorse ADCP 1200kHz			
計測モード	WM11	ウォーターピング数	3
計測層厚	0.05~0.03m	ボトムトラック機能	ON
計測層数	50	ボトムピング数	3
アンサンブルタイム	0.43~1.37s	固定観測における流速 誤差の標準偏差	0.77cm/s

2009/12/28 - 2010/1/21

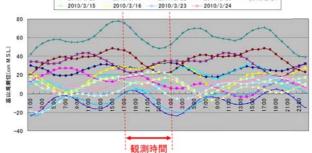


図-2 富山湾観測潮位

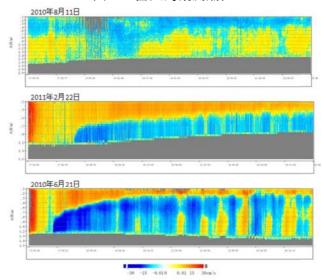
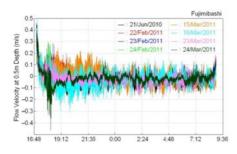
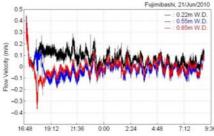
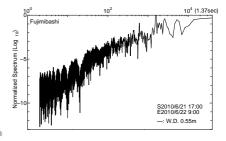


図-3 鉛直方向の流速分布の時系列


図-1 に西内川の平面形状と河床高の縦断変化を示す.河口から流路延長 267.1m に位置する「藤見橋」にお いて ADCP を用いた鉛直方向の流速分布に関する定点観測を行った。また、図からもわかるように河床勾配 は極めて緩勾配である.


表-1 は ADCP の計測設定条件である. 本研究では, 河川の流速を 3 次元で計測できる超音波ドップラー多 層流向流速計(ADCP; Teledyne RD Instruments 社製)を利用した.


3. 観測結果

キーワード 塩水遡上、塩水くさび、ADCP、流速分布、内川

連絡先 〒939-0398 富山県射水市黒川 5180 富山県立大学工学部環境工学科 TEL0766-56-7500

おける流速の時系列

図-4 水深 22cm, 55cm, 85cm に 図-5 8 回の観測について, それ ぞれ水深 50cm の流速の時系列

図-6 図-4 中の水深 55cm におけ る流速についてのスペクトル

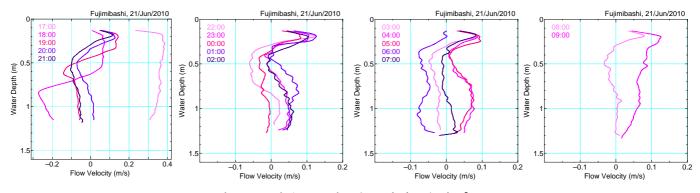


図-7 17 時から 9 時まで 1 時間毎の流速の鉛直プロファイル

図-2 はこれまでに観測を実施した 14 回の富山湾観測潮位である. 2010 年 8 月 11 日は年間で最も潮位が高 い日であり、2月から3月は潮位が最も低い時期である. 観測した中で最も潮位の高い2010年8月11日と最 も低い 2011 年 2 月 22 日, そして上げ潮時のデータの一つである 2010 年 6 月 21 日の鉛直方向の流速分布の時 系列を図-3に示す. 図中の赤色系は順流, 青色系は逆流(河口からの遡上)を示している. 前述したように8月 11 日は年間最高の潮位があるため、庄川からの揚水を行っていない、そのため、表層塩分と低層塩分の比が 大きく,強混合形態で遡上している.一方,他の2つについては,明瞭な楔状に塩水が遡上していることがわ かる. これまでの観測においては、8月11日を除いた全ての観測で同様の流速分布が観測された. 特に、上 げ潮時には極めて明瞭な楔形状が認められる、さらに、塩水が浸入し始めてから約2時間後、順流と逆流を周 期的に繰り返すような挙動が認められる.このような周期性は翌日9時まで続いている.

次に, 図-4 は水深 22cm, 55cm, 85cm における流速の時系列である. 水深 22cm は上層の順流, 85cm は下 層の逆流, そして 55cm は界面付近を想定している. ここからもわかるように, 19 時以降はいずれの断面にお いても、全体的に周期性を持った流速変化をしている. 塩水が遡上し始めてから5時間程度経過すると、いず れの断面も流速値は同程度になっている. 図-5 は長時間の観測を実施した 8 回の観測について、それぞれ水 深 50cm の流速の時系列である. 前述したような周期特性は、振幅の大小はあるものの、いずれの観測におい ても認められる. 図-4 中の水深 55cm における流速についてスペクトル解析を行った結果を図-6 に示す. 35.53 分に顕著な周期性が認められた.

図-7 は 17 時から 9 時まで 1 時間毎の流速の鉛直プロファイルである. 17 時の時点では、揚水の影響を受け ているため全断面において順流である. 18時に下層で最大 0.27m/s の逆流が観測されており, 塩水が遡上して いることがわかる. 塩水遡上の先端以降は、分布形状がゆるやかになり、逆流の最大流速は 50cm 付近に位置 している. 前述したように、周期的に流速分布が変化していることを反映して、流速値の変動はあるものの、 表層付近と水深 50cm 付近と水深 80cm 付近の 3 箇所に変曲点を持つような流速分布形状をしている.

4. まとめ

感潮河川における塩水の浸入形状を ADCP を用いて観測した. その結果, 時間分解能が小さくかつ連続的 に塩水遡上中の鉛直方向の流速分布を捉えることができ, 簡易的にも塩水浸入の混合形態を判別できる可能性 が高い、本稿では、塩水楔が浸入中の鉛直方向の流速分布を明らかにし、さらに、塩水浸入時において周期的 な流速変化があることがわかった.

参考文献

- 1) 小松利光ら: 川内川河口部における塩水遡上について、水工学論文集、第40巻, pp.493-498, 1996.
- 2) 中村宏, 稲松敏夫: 神通川河口の塩水くさびについて, 第13回海岸工学講演会講演集, pp.295-301, 1966.