鋼トラス橋格点部の狭隘な部分の形状計測と腐食損傷状況

首都大学東京 学生会員 〇山本 憲 (独)土木研究所 正会員 村越 潤 首都大学東京 フェロー会員 野上邦栄 (独) 土木研究所 正会員 遠山直樹 鹿島建設(株) 正会員 山沢哲也 (独) 土木研究所 正会員 澤田 守 早稲田大学 フェロー会員 依田照彦 (独) 土木研究所 正会員 有村健太郎 早稲田大学 笠野英行 (独)土木研究所 郭路 正会員

1. はじめに

現在、膨大な構造物の高齢化が急速に進む中 で、近年、国内外の鋼トラス橋において斜材の 破断および崩落事故など重大損傷が報告されて いる 1). このような状況において、既設鋼トラ ス橋の格点部の腐食データの蓄積は、格点部の 性能評価、橋梁全体系及び構成部材の耐荷性能 の適切な評価、さらには信頼性の高いリダンダ ンシー解析のモデル化に繋がる. 本研究では, これまで目視観察がほとんどであり、実態調 査が行われることが少なかった鋼トラス橋格 点部の狭隘な箇所の詳細な腐食形状計測を実 施した.

2. トラス橋狭隘部の石膏供試体と腐食計測

2.1 石膏供試体

対象橋梁は、図1に示す昭和37年に供用した鋼5径間連 続トラス橋である. 対象とした格点部は, 下流側主構の上弦 材格点部 P25d であり, 撤去した格点部のブラスト後の全体系 の写真を図2に示す. 図中の(b)の表が下流側(海側), 裏が上 流側(海側)である. 腐食は、(b)の上下流表面のリベット部お よび斜材とガセットプレートの境界近傍, (a)(c)の I 桁に絞 り込まれた斜材とガセットプレートのリベット接合された狭 隘部の腐食が激しい.狭隘部は、表面粗さ計測装置により直 接計測できないため、石膏で型取りし、その石膏供試体 表面をレーザー変位計で計測する方法を採用した。石膏 には、高強度石膏(ゾーストーンK、、攪拌時間約3分) を採用し、①石膏の計量、②水と石膏の配合(標準混水率 40%)、③石膏の攪拌(3分)、④型枠設置、⑤石膏の流し 込み、⑥養生硬化(約1時間)、⑦脱型の手順で石膏供試 体を作成した。④の型枠打設は、格点部試験体のガセッ

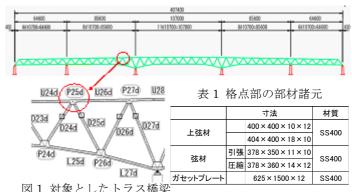


図1 対象としたトラス橋梁

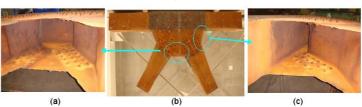


図 2 格点部 P25d の腐食状況

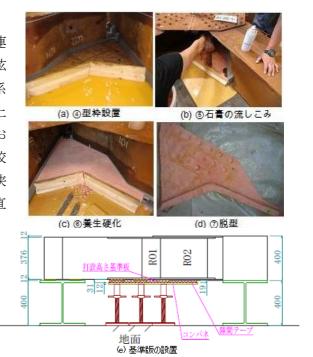


図3 石膏供試体の型どりの様子

トプレートと19㎜の隙間を設けて打設高さ基準板を設置し、型取りする周囲を隙間テープで囲み、部材表面 にグリスを塗布し、さらにワイヤーメッシュを内部に設置した。

Key word: 腐食, トラス橋格点部, 計測, 石膏

連絡先 〒192-0397 東京都八王子市南大沢 1-1 首都大学東京

2.2 計測方法

計測は、図4に示すレーザー変位計を設置した表面粗さ計測装 置を用いた²⁾. 図 4 のつかみ具に脱型した石膏試験体を固定して 計測する. 計測は 1mm ピッチで行った. 図3のようにあらかじ め試験体に設定されている基準版の平面において 3~4 点を計測 して基準面とした. 基準版からガセットプレートまでの距離 19mm およびガセットプレート厚 12mm を考慮してガセットプレ ート表面までの距離(19+12=31mm), さらに腐食表面までの距離 (h), 基準版までの距離(B)を用いて腐食深さは (B-h-31) で算出す る. なお隘狭部の計測は内面と外面からの腐食量で整理した.

3. 腐食形状計測結果と腐食状況

図 5 の(a)は下流側狭隘部の腐食深さを示したものである. (b)は 内面部のガセットプレートを基準にした腐食深さである. ガセット プレート全体では腐食深さが平均 2.99mm, 斜材との接合部付近と縁 端部に激しい腐食が発生しており、その箇所では平均で 4.51mm であ った. 斜材を基準にして見ると、腐食深さは(b)の緑色の斜材全体で は平均で 1.15mm あった. 縁端部に激しい腐食が見られ, さらに斜材 は奥まって絞り込まれた箇所で腐食が激しく進行している. 外面部 と同様にリベット周りにドーナツ状の腐食があり、リベット頭部が 腐食している. 最大減肉量は 5.48mm, 比較的健全なリベットでは約 15mm 残っている. 引張側の斜材の方が表面の腐食, リベット共に減(b) 内面部ガセットプレートを基準にした腐食深さ 肉している.

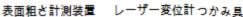

図6は上流側の内面部ガセットプレートを基準にした腐食深さであ る. 図 5 の (b) に対応するもので下流側と同じような腐食の進行具合を 示している. 圧縮側では平均で 2mm 程度上流側の腐食が大きい.

図7は斜材の残存板厚である.表3は斜材の残存板厚と最小板厚を 表したもので、健全部材の板厚は引張側が 10mm, 圧縮側が 12mm であ る. 平均残存板厚はそれぞれ 8.43mm, 10.87mm, 最小板厚は引張側で 1.00mm, 圧縮側で 4.17mm であり, かなり減厚している.

4. まとめ

鋼トラス橋の狭隘部の腐食形状計測を行った結果,(1)ガセットプレー トは、縁端部に激しい腐食が見られ、斜材との接合部分の縁端部にも激 しい腐食が見られた.(2)斜材は I 断面に絞り込まれた狭隘部のフランジ 部においてリベット頭部およびその周辺のドーナツ状の腐食、母材全 体は全面不均一腐食, さらにその縁端部に激しい腐食が見られた.

謝辞:本研究は、3者((独)土木研究所、首都大学東京、早稲 田大学)による,腐食劣化の生じた橋梁部材の耐荷性能の評価手 法に関する共同研究の一環として行っており, 建設技術研究開発

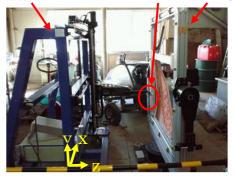


図 4 計測装置

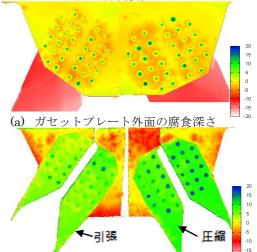


図 5 下流側内面部の腐食深さ(mm)

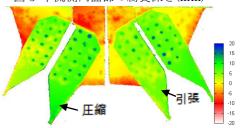


図 6 上流側内面部ガセットプレートを 基準にした腐食深さ(mm)

図 7 下流側内面部の斜材残存板厚(mm)

表 3 内面部斜材の残存板厚と最小板厚

	健全部材の板厚	平均残存板厚	最小残存板厚
	(mm)	(mm)	(mm)
斜材(引張)	10	8.43	1.00
斜材(圧縮)	12	10.87	4.17

助成を受けて実施されたものである. また本研究の実施にあたり, 撤去部材をご提供いただいた千葉県銚子土木事務所には深 く御礼申し上げます.

参考文献:1) 笠野, 依田:米国ミネアポリス I-35W 橋の崩壊メカニズムと格点部の損傷評価,土木学会論文集 A, 2010, 2) 山本, 野上他: 腐食損傷により撤去した鋼トラス橋格点部の腐食形状計測, 関東支部発表会, 2011