東北電力(株)	正会員	○伊達	政直	大内	一男
(株)大林組	正会員	永井	秀樹	渡辺	伸和

1. はじめに

「地中構造物は,地上構造物に比較して地震に対 して高い安全性を持っているのではないか」と言わ れており,これをどのように実際の設計照査に反映 するかが課題となっている。地中構造物の耐震性能 照査を,耐力照査から変位(層間変形角)による照 査へ移行することが一手法として挙げられる。特に 構造物の要求性能が構造物の塑性,損傷をある程度 許す地中構造物においては,耐力照査に比較して変 位照査はより合理的な結果を与える可能性があると 考えられる(図-1)。

図-1荷重~変位曲線と限界変位

昨年度の報告では,地中構造物を対象に,頂版に 強制変位を与える変位制御による交番載荷解析を行 い,荷重~変位関係から構造物の限界変位の設定を 行った。本報告では,構造物と地盤を連成させた動 的非線形応答解析を行うことで,地中構造物の時刻 歴応答変位を導き,頂版と底版間の層間変位を算出 して,その最大層間変位と構造物の限界変位を比較 することによって求める変位照査手法を提案する。

2. 解析モデル

土被り厚さが約7.9mである6連の鉄筋コンクリ ート製の導水路ボックスカルバートを対象とする (図-2)。コンクリート構造物非線形有限要素法プロ グラム「FINAL」に対して,構造物と地盤を連成させ た動的非線形応答解析を行えるように,地盤を平面 歪要素でモデル化し,地盤構成則および地盤モデル の側方境界条件として粘性境界を導入した。 地盤構成則は、上層の埋戻土や表土に R-0 モデル を適用し、ボックスカルバート直下の風化岩〜硬岩 層を弾性体とした(図-3)。ボックスカルバートは、 コンクリートを平面歪要素、鉄筋をトラス要素でモ デル化した。コンクリート構成則は、修正 Ahmad モ デルおよび長沼モデル、鉄筋をバイリニアでモデル 化した。

図-3 地盤連成解析モデル

3. 限界変位の設定

変位制御交番載荷解析では,対象構造物に初期状 態として常時荷重(自重,土圧,土被り圧)を作用 させた後,各壁の上端に5.9mm(層間変形角約1/1000) の水平方向変位を与え,交番で5.9mm ずつ漸増させ た。限界変位は,荷重~変位曲線より,正側4サイ クル目で脆性的な破壊に至るため,限界変位は正側3 サイクル目の17.7mmと設定した(図-4)。荷重制御交 番載荷解析では,初期応力状態を再現した後,地盤 ~構造物を連成させた動的線形応答解析 (SuperFLUSH)から設定した地震時土圧および躯体慣 性力を一方向に静的に作用させ,これらの荷重分布 を保持しながら漸増させ,限界変位を16.0mmとした。 両解析の限界変位に大きな差はなかったことから,

昨年度の報告では、層間変位が構造物の地震時の限

キーワード 電力施設,動的非線形応答解析,変位照査,地盤構成則
連絡先 〒980-8550 仙台市青葉区本町 1-7-1 TEL 022-799-6103 FAX 022-262-5851

界状態を示す指標として有効であることを示した。

図-4 荷重制御単調載荷荷重~変位曲線との比較

4. 動的非線形応答解析の結果

最大水平加速度で約 600gal,最大鉛直加速度で約 370galの地震波を,解析モデル下端より入力し,上 下同時加震による動的非線形応答解析を行った。

対象構造物の中壁(中心位置)における頂底版の時 刻歴応答変位の結果を,それぞれ図-5に示す。水平 方向の入力加速度は,時刻12.4sで最大値を示すが, 頂版の応答変位は,時刻6.01sで最大値を示し,そ の後は収束する結果となり,地盤の塑性化の影響で あると考えられる。

5. 作用荷重と応答変位の関係

応答解析によって求まる対象構造物の全壁のせん 断力合計(水平荷重)と頂底版間の層間変位(応答 変位)の分布を,図-6に示す。頂底版間の最大相対 変位は,2.1mmとなり直線的に分布していることから, 対象構造物は弾性範囲内の応答であると言える。荷 重~変位関係の勾配は,荷重制御交番載荷解析の結 果とほぼ一致しており,変位制御交番載荷解析とは 異なっている。土圧による作用荷重は,実際には分 布荷重として壁全体に作用しているにもかかわらず, 変位制御交番載荷解析では頂底版間に強制変位を与 えているためと考えられる。対象構造物をファイバ ー要素とし,材端部に剛域を設けてモデル化した場 合には,その荷重~変位関係の勾配が大きく異なる 結果となった。ファイバー要素ではハンチ部形状や 鉄筋を忠実にモデル化できず、剛性を正確に表現す ることが難しいためと考えられる。

図-6 作用荷重~応答変位の分布

6. 限界変位との比較による変位照査

変位照査として,地盤〜構造物を連成させた動的 非線形応答解析により対象構造物の応答変位を導き, 頂底版間の時刻歴層間変位を算出し,その最大層間 変位と構造物の限界変位を比較することにより照査 値(=応答値/限界値)を求めた。部材単位の耐力照 査では,照査値が0.97であったものが,連成系によ る構造物の耐力照査では照査値が2.0となり,更に 変位照査の照査値では8.4に増加した。なお,照査 値の算定において耐力照査では、部分安全係数を考 慮しているが,変位照査ではそれを見込んでいない ため,その分を割り引いて評価する必要がある。

表-1 各照査手法の照査値

照查手法	応答値	限界値	照査値
部材の耐力照査	675kN	653kN(耐力)	0.97
連成系による 耐力照査	4,570kN	9,039kN (耐力)	2.0
連成系による 変位照査	2.1mm	17.7mm (限界変位)	8.4

7. 今後の課題

コンクリート構造物の耐力照査では、各指針にお いて多くのデータ蓄積をもとに部分安全係数が整備 されている。今後、地中構造物に対して変位照査を 適用する場合には、部材実験などにおける構造物変 位のデータを収集・整理し、変位照査における部分 安全係数について検討していくことが求められる。

参考文献

 1) 土木学会原子力土木委員会,「原子力発電所屋外重要土木 構造物の構造健全性評価に関するガイドライン」,2008/7
2) 伊達,山口,「せん断破壊する地中ボックスカルバートの 地震時限界変位」2010/9,土木学会第65回年次学術講演会
3) 大内,永井,「ポストピーク領域を考慮したカルバートの 地震時限界変位」2010/9,土木学会第65回年次学術講演会