福井平野の微動アレイ地盤モデルの再評価

第一電機工業㈱ 正会員 ○橋本勇一 福井工業大学 正会員 安井譲 鳥取大学 正会員 野口竜也 同 正会員 香川敬生 大鉄工業㈱ 非会員 中谷英史

1. はじめに

著者らがこれまでに行ってきた微動アレイ観測に基 づく地盤モデル¹⁾と,微動 H/V 探査によるモデルや重 力解析の結果^{2),3)}との間に不整合がみられたので、微動 アレイ観測に基づく地盤モデルの再評価を試みた.

2. 微動観測と重力解析について

図-1 に微動アレイ観測地点(▲)と微動3成分観測点 (●)を示す. 6 つの微動アレイ観測地点において SPAC 法4)により求めた分散曲線のフォワード解析により地 盤構造モデル(以後,既往モデルと称する)が推定さ れている¹⁾. また, これらの微動アレイ観測地点を通る 南北(同図の A-A'ライン)および東西(B-B'ラインと C-C'ライン)の3つの測線では、著者らが提案した方 法²⁾による微動 H/V 探査と重力解析が行われており2 次元的な地盤構造^{2),3)}(以後それぞれ,H/Vモデルと重 カモデルと称する)が推定されている.

再評価の必要性について

表-1 に既往モデルの整合度をまとめて示した. 再評 価の対象は板垣を除く5地点とした.評価項目は,H/V スペクトルの周波数特性の観測値と既往モデルの計算 値⁵⁾との比較、地震基盤の深さのH/Vモデルとの比較、 および地震基盤の深さの重力モデルとの比較である. 同表から東荒井を除くすべての地点の既往モデルを再 評価する必要があることがわかる.

4. 分散曲線の逆解析

再評価は微動アレイ観測により得られている分散曲

表-1 既往モデルの整合度

項目	菅谷	山村	春江	東荒井	丸岡
H/Vスペクトル	Δ	×	×	0	×
地震基盤 (H/Vモデル)	×	0	×	0	0
地震基盤(重力モデル)	×	0	×	0	×
			0.17 7	toright The second	Whit was a day of

表-2 再評価モデルの整合度

項目	菅谷	山室	春江	東荒井	丸岡
H/Vスペクトル	∆→O	×→△	×→O	0	×→O
地震基盤 (H/Vモデル)	×	O→×	×→O	0	0
地震基盤 (重力モデル)	×	O→×	×→O	0	×

(e) 丸岡

線を遺伝的アルゴリズム (GA)^{6),7)}で逆解析する方法に よった. その目標となる分散曲線は各半径で得られた ものを編集して一本の連続したものにする必要がある が、当該地点の H/V モデルの基本モードの理論分散曲 線 ⁵にできるだけ近いものを目視により選択する方法

キーワード 福井平野, 速度構造, 微動アレイ観測, 微動 H/V 探査, 重力解析, GA 連絡先 〒910-8505 福井県福井市学園 3-6-1 福井工業大学土木環境工学科 TEL 0776-29-2554

-905-

とした.図-2に、各半径で得られた観測値、H/Vモデ ルの基本モードの理論分散曲線および一本化する分散 曲線(●)を示した. 逆解析に用いた地盤モデルは、そ の層数,S波速度 Vs と密度 ρ は既往モデルと同じとし 全層の層厚を探索することとした. なお, その他の探 索条件については文献 8)を参照されたい.

図-3に5地点の逆解析結果を示した.図-4に逆解析 により再評価した地盤モデル(以後、再評価モデルと 称する)と既往モデルの理論 H/V スペクトルを観測値 と比較して示した. 表-2 に再評価モデルの整合度を示 した. 同表から春江が全項目にわたって改良されてい ることが分かる.一方,山室は既往の約1,200mの地震 基盤が約480mと再評価され、その一致度が大きく後退 した. そこで、同地点の再々評価を行うこととした.

5. 山室地点の再々評価

図-2(b)の観測値の分散曲線において 0.5~1.5Hz の範 囲に明瞭に現れたものを1次モードと考えて逆解析を 行った. その結果得られた地盤モデル(以後, 再々評 価モデルと称する)を用いて計算した基本モードと1 次モードの理論分散曲線を観測値と比較して図-5に示 した.0.5~1.5Hz では観測値は再々評価モデルの1次モ ードに、1.5Hz 以降は基本モードにほぼ一致している.

図-4(b)には、H/V スペクトルの観測値を、既往、再 評価および再々評価の各モデルの理論値と比較して示 してある. 同図から再々評価モデルの妥当性が窺われ る. 表-3 に再評価モデルと再々評価モデル(併せて最 終モデルと称する)の地盤構造の諸元を示した.

考察 6.

図-6 に最終モデルと既往モデルの地震基盤について H/Vモデルと重力モデルを比較して示した.同図から、 春江の整合性が大きく向上したことが確認できる. 一 方, 菅谷については殆ど改善がみられなかった. 表-4 に、最終モデルの整合度を示した. 同表から春江のほ かに山室が全項目にわたって改良されていることがわ かる.また,菅谷と丸岡では重力モデルとの不整合性 は改善されなかった.

7. おわりに

H/V モデルを拠りどころとして既存のアレイモデル を再評価した.その結果, H/Vモデルとの整合性が全 般的に向上した. 菅谷地点の地盤構造のさらなる照 査・検討と, 菅谷地点と丸岡地点の重力モデルとの不 整合性の原因の究明は今後の課題である.

表-3 最終モデルの地盤構造 (a) 菅谷

No.	地質	層厚 (m)	深度 (m)	$\begin{array}{c} \rho \\ (t/m^3) \end{array}$	Vs (m/sec)
1	沖積層	14	14	1.7	120
2		19	33	1.7	260
3	洪積層	50	84	1.8	400
4		248	332	1.8	670
5	新第三紀層	1,153	1,485	2.0	1,800
6	地震基盤	-	-	2.5	3,200

(b) 山室

No.	地質	H (m)	Depth (m)	ρ (t/m³)	Vs (m/sec)
1	沖積層	13	13	1.7	90
2		15	28	1.7	240
3	洪積層	43	71	1.8	400
4		281	352	1.8	670
5	第3紀層	1,037	1,389	2.0	1,800
6	地震基盤		I	2.5	3,200

(c) 春江

No.	地質	H (m)	Depth (m)	$\begin{array}{c} \rho \\ (t/m^3) \end{array}$	Vs (m/sec)
1	沖積層	14	14	1.7	127
2		12	26	1.7	200
3	洪積層	39	65	1.7	360
4		158	223	1.8	670
5	第3紀層	699	921	2.0	1,800
6	地震基盤	_	_	2.5	3.200

(d) 東荒井

No.	地質	層厚 (m)	深度 (m)	$\underset{(t/m^3)}{\rho}$	Vs (m/sec)
1	沖積層	17	17	1.7	110
2	洪積層	56	73	1.7	370
3		141	214	1.8	670
4	新第三紀層	724	938	2.0	1,800
5	地震基盤	_	—	2.5	3,200

(e) 丸岡

No.	地質	層厚 (m)	深度 (m)	$\begin{array}{c} \rho \\ (t/m^3) \end{array}$	Vs (m/sec)
1	沖積層	14	14	1.7	133
2		7	21	1.7	300
3	洪積層	104	125	1.8	630
4	新第三紀層	591	716	2.0	1,800
5	地震基盤	_	_	2.5	3,200

表-4 最終モデルの整合度

参考文献

- 安井他:月刊地球, Vol.30, No.9, pp.444-452, 2008. 1)
- 安井他: JSCE 地震工学論文集, 第 30 巻, pp.75-81, 2) 2009.
- 橋本他: JSCE 全国大会, I-314, pp.627-628, 2010. 3)
- 岡田他:物理探查,第43巻,第6号,pp.402-417,1990. 4)
- 5) 久田他: AIJ 論文集, 第 501 号, pp.49-56, 1997.
- 山中他: AIJ 論文集, 第468 号, pp.9-17, 1995. 6)
- 7) 石田他: ISBN4-627-82420-3, 森北出版, 1997.
- 橋本他:福井工業大学研究紀要,2011年5月(投稿中). 8)