有限被覆法による自由表面を有する流れ解析

中央大学大学院	学生員	中村	正人
計算力学研究センター	正会員	高瀬	慎介
中央大学	正会員	樫山	和男
茨城大学	正会員	車谷	麻緒
東北大学	正会員	寺田	賢二郎
広島大学	正会員	岡澤	重信

1. はじめに

タンクや河川・海岸構造物の計画,設計においては,自由 表面を有する流れの挙動を正確に評価することは重要であ る.これらの評価方法として,数値シミュレーション手法 が近年有効に用いられているが,それらの手法は移動メッ シュを用いる手法と固定メッシュを用いる手法に大別され る.移動メッシュを用いる手法は界面を直接的に扱うため 解析精度の点で有効であるが,跳水や砕波を含むような複 雑な解析を行う場合,解析メッシュに破綻が生じ解析が困 難となる場合が多く,ロバスト性に問題がある.

そこで本研究では,ロバスト性に優れる固定メッシュに 基づく手法に着目して手法の開発を行うが,固定メッシュ を用いる手法では,流体と固体の境界が移動する場合に境 界の位置を正確に考慮することが一般に困難である.この 問題を解決する手法として,固体解析において提案された 有限被覆法¹⁾(FCM)を自由表面流れ解析に適用すること を試みた.なお,流体と固体の界面における境界条件処理 にはペナルティ法を用いた.また,流体は非圧縮性粘性流 体を仮定し,流体の気体と液体の界面の表現には VOF 関 数を用い,流体と固体の界面の表現には Level Set 関数を用 いた.

2. 数值解析手法

(1) 支配方程式

Euler 記述された非圧縮性粘性流体の運動方程式及び,連続式はそれぞれ以下の(1),(2)で表される.

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f} \right) - \nabla \cdot \sigma \left(\mathbf{u}, p \right) = 0 \qquad (1)$$
$$\nabla \cdot \mathbf{u} = 0 \qquad (2)$$

ここで,
$$\rho$$
は密度,uは流速ベクトル,fは物体力ベクトル
を表している.また,応力テンソル σ は以下の式 (3) で表
される.

$$\sigma = -p\mathbf{I} + \mu \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u}\right)^T\right] \tag{3}$$

ここで, p は圧力, μ は粘性係数である.また, Dirichelet 型, Neumann 型境界条件は, それぞれ次式で与えられる.

$$\mathbf{u} = \mathbf{g} \quad \text{on} \quad \Gamma_g \tag{4}$$

$$\mathbf{n} \cdot \boldsymbol{\sigma} = \mathbf{h} \quad \text{on} \quad \Gamma_h \tag{5}$$

ここで,g,hはそれぞれ流速,トラクションの既知量を示し,nは外向き法線ベクトルを示す.また,自由表面位置

図 – 1 数学領域 Ω^M と物理領域 Ω^P

は,次式(6)の移流方程式を解くことにより決定される.

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0 \tag{6}$$

ここで, ϕ は VOF 関数を表し,気体であれば 0.0,液体であれば 1.0,自由表面上であれば 0.5 となる.

(2) 有限被覆法 (Finite Cover Method)の適用

有限被覆法は,図-1に示すように近似関数が定義され る数学領域 Ω^M と,支配方程式が満たされるべき物理領域 Ω^P(図-1の場合,流体領域)を分離して定義するという 点で,有限要素法と大きく異なる.しかし,解析対象を要 素で部分分割し,各要素間の未知量を節点値により補間近 似するという点において有限要素法と一致するため,有限 要素法を一般化した手法とみなすことができる.以上の特 性から,有限被覆法では,有限要素法と同様の近似関数を 用いながらも,要素内に流体と固体の境界が存在すること を許容し,その境界位置を正確に考慮した流れ場を求める ことが可能である.

(3) 安定化有限被覆法

支配方程式(1),(2)に対して,SUPG/PSPG法に基づく 有限被覆法を適用し,自由表面付近の数値振動を回避する 衝撃補足項を付加する.また,ペナルティ法による付帯拘 束条件を与えると以下の弱形式が得られる.

$$\rho \int_{\Omega_{f}} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f} \right) \cdot \mathbf{u}^{*} d\Omega$$

$$- \int_{\Omega_{f}} p \nabla \cdot \mathbf{u}^{*} d\Omega + \mu \int_{\Omega_{f}} \left(\nabla \mathbf{u} : \nabla \mathbf{u}^{*} + \nabla \mathbf{u} : (\nabla \mathbf{u}^{*})^{T} \right) d\Omega$$

$$+ \int_{\Omega_{f}} q^{*} \nabla \cdot \mathbf{u} d\Omega + \sum_{f=1}^{n_{el}} \int_{\Omega_{f}} \{ \tau_{supg} \mathbf{u} \cdot \nabla \mathbf{u}^{*} + \tau_{pspg} \frac{1}{\rho} \nabla q^{*} \}$$

$$\cdot \{ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f} \right) - \nabla \cdot \sigma \} d\Omega$$

$$+ \sum_{f=1}^{n_{el}} \int_{\Omega_{f}} \tau_{cont} \nabla \cdot \mathbf{u}^{*} \rho \nabla \cdot \mathbf{u} d\Omega + \int_{\Gamma_{u}} \bar{p}(\mathbf{u} - \bar{\mathbf{u}}) d\Gamma = 0 \quad (7)$$

KeyWords: 有限被覆法,自由表面流れ,移動境界

連絡先: 〒112-8551 東京都文京区春日 1-13-27 E-mail: masato@civil.chuo-u.ac.jp

土木学会第65回年次学術講演会(平成22年9月)

図-3 Cavity 中心線上の流速分布 (左上: Re = 100,右上: 1000,左下: 5000,右下: 10000)

ここで、 \mathbf{u}^* 、 q^* はそれぞれ運動方程式と連続式に対する重 み関数を表す.また、 τ_{supg} 、 τ_{pspg} 、 τ_{cont} は安定化パラメー タを表す.一方、気体、液体の界面関数である移流方程式 に対しては、SUPG法に基づく有限被覆法を適用する.式 (7)に対して、P1/P1(流速・圧力一次)要素を用いて補間 を行い、時間方向の離散化にはCrank-Nicolson法を用い る.また、移流速度は、2次精度Adams-Bashforth法によ り陽的に近似する.連立一次方程式の解法にはElement by Elementに基づくGPBi-CG法を用いる.

3. 数值解析例

(1) Cavity 流れ問題

本手法の妥当性を示す問題として, Cavity 流れ問題を行う.解析モデルと解析に用いたメッシュの拡大図を図-2 に示す.各辺をそれぞれ70分割したものを用いる.境界 条件として,上側で流速u=1,流体と固体の境界を表す 赤い破線には、ペナルティ法によりx,y方向流速を零と し、すべりなし条件としている.流体と固体の境界上の要 素は、流体領域の位置を考慮して積分を行う.Reynolds数 は、Re = 100,1000,5000,10000の4ケースを行い、微小 時間増分量は $\Delta t = 0.01$ とした.図-3にCavity中心に おける流速分布を示す.高 Reynolds数である Re=5000, 10000の結果においてはFEMによる解析結果,Ghia 6²⁾の値と若干の差異は見られるが、本手法の妥当性を確認 できる.

図-5 時刻ごとの自由表面形状

(2) 流体中を強制運動する構造物周りの流れ問題

次に,流体中を強制運動する構造物周りの流れ問題 (図-4)を取り上げる.なお,微小時間増分量は $\Delta t = 0.001$ とする.時刻ごとの自由表面形状を図-5に示す. 構造物の移動に伴う液体の越流現象をロバストに解析でき ていることから,本手法の有効性が示される.

4. おわりに

本研究では,流体と固体の界面を正確に考慮するために, 有限被覆法に基づく自由表面流れ解析手法の構築を行い, 以下の結論を得た.

- 要素間に流体と固体の境界が存在する場合においても、参照解である FEM による解析結果、Ghia らによる計算結果とほぼ同等の流速分布が得られ、本手法の妥当性が確認できた。
- 流体中を固体が移動する問題においても、ロバストに解析が行え、本手法の有効性が確認できた。

参考文献

- 1) 車谷麻緒: 3 次元有限被覆法の開発とその性能評価:東北大学 大学院修士論文, 2004.
- U. Ghia, K. N. Ghia and C. T. Shin : High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method : Journal of Computational Physics, 1982.