無限長軌道と半無限地盤との連成調和振動解析

-1	1+1	ッチ	1-
		())	11

文献¹⁾では,剛基礎上に離散支持された無限長レールの加 振応答解析が行われている.しかし,実際の軌道系は,レー ル,それを支持するまくらぎやパッドだけではなく,地盤 との相互作用が存在する.そのため,地盤も考慮した連成 系での応答特性の評価がより望ましいといえる.

そこで本研究では,地盤を二次元半無限動弾性場でモデ ル化し,離散支持された無限長レールとの連成解析手法を 構成する.定点調和加振下での解析を行い,軌道・地盤連 成下での応答特性を調べる.

2. 連成解析手法の構築

(1) 離散支持された無限長レールの解析手法

図1の様に,レールを周期長L で離散支持された無限周 期構造によりモデル化する.x₁軸方向の Floquet 変換¹⁾ に より次の方程式を得る.

$$[\bar{\mathbf{v}}]^T [\hat{\mathbf{K}}] \{ \tilde{\mathbf{u}} \} = [\bar{\mathbf{v}}]^T \{ \tilde{\mathbf{F}} \}$$
(1)

ここで, $\{\tilde{\mathbf{u}}\}, \{\tilde{\mathbf{F}}\}\$ は1ユニットを離散化して得られる節点 変位,節点力ベクトル, $\{\mathbf{v}\}\$ は任意の仮想節点変位ベクト ル, (⁻)は複素共役である.また, $[\hat{\mathbf{K}}]$ の成分 \hat{K}_{ij} は剛性 行列 K_{ij} と質量行列 M_{ij} , 円振動数 ω より,次式で与えら れる.

$$\hat{K}_{ij} = K_{ij} - \omega^2 M_{ij} \tag{2}$$

なお,レールは Euler ばりで与え,添え字成分 ()_L,()_M, ()_R,()_B をそれぞれ軌道ユニットセルの左端,中央部,

新潟大学大学院自然科学研究科	学生員	高野 祐紀
新潟大学工学部建設学科	正会員	阿部 和久
新潟大学大学院自然科学研究科	正会員	紅露 一寛

右端,下端に対応する節点ベクトルとし.まくらぎは質点 でモデル化した.Floquet 原理により方程式を縮約して次 式を得る.

$$\begin{bmatrix} \mathbf{K}'_{LL} & \mathbf{K}'_{LM} & \mathbf{K}'_{LB} \\ \mathbf{K}'_{ML} & \mathbf{K}'_{MM} & \mathbf{K}'_{MB} \\ \mathbf{K}'_{BL} & \mathbf{K}'_{BM} & \mathbf{K}'_{BB} \end{bmatrix} \begin{pmatrix} \tilde{\mathbf{u}}_L \\ \tilde{\mathbf{u}}_M \\ \tilde{\mathbf{u}}_B \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \tilde{\mathbf{F}}_M \\ \tilde{\mathbf{F}}_B \end{pmatrix}$$
(3)

(2) 半無限動弾性場の解析手法

半無限地盤より,軌道の周期長 L に合わせて設定した1 ユニットを取り出し, x₁ 方向に Floquet 変換して得られる 場のインピーダンス行列を K_s とする.すると自由表面上 の節点変位と節点力との関係は次式で与えられる.

$$[\mathbf{K}_s]\{\tilde{\mathbf{u}}_s\} = \{\tilde{\mathbf{F}}_s\} \tag{4}$$

式 (4) を解いて得られる,まくらぎ位置の節点変位 \tilde{u}_G と 同位置の節点力 \tilde{F}_G とで与えられるインピーダンスを K_G とおくと,次式が成り立つ.

$$K_G \tilde{u}_G = \tilde{F}_G \tag{5}$$

(3) 求解方程式の導出

式 (3) と式 (5) に,変位の適合条件 $\tilde{u}_G = \tilde{u}_B$ および力の つり合い条件 $\tilde{F}_G + \tilde{F}_B = 0$ を課すと,次の求解方程式が得られる.

$$\begin{bmatrix} \mathbf{K}'_{LL} & \mathbf{K}'_{LM} & \mathbf{K}'_{LB} \\ \mathbf{K}'_{ML} & \mathbf{K}'_{MM} & \mathbf{K}'_{MB} \\ \mathbf{K}'_{BL} & \mathbf{K}'_{BM} & \mathbf{K}'_{BB} + K_G \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{u}}_L \\ \tilde{\mathbf{u}}_M \\ \tilde{u}_B \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \tilde{\mathbf{F}}_M \\ \mathbf{0} \end{bmatrix}$$
(6)

上の式を解き,これに次の逆 Floquet 変換を施して変位応 答 {u} が得られる.

$$u(\tilde{x} + nL) = \frac{L}{2\pi} \int_{-\frac{\pi}{L}}^{\frac{\pi}{L}} \tilde{u}(\tilde{x} \ \kappa) e^{-in\kappa L} d\kappa \tag{7}$$

なお,逆変換の積分処理を施す際に,地盤・レール(はり) 連成系の理論分散曲線が存在する波数では,特異積分の処 理が必要となる.Euler ばりが半無限地盤上に置かれている 場合の分散曲線は,低周波数域ではRayleigh 波に,高周波 数域では横波に漸近する.そこで,解析では,Rayleigh 波 と横波の中点前後で式(7)の波数を複素数に拡張し,図3

表 1 軌道・地盤の各種物理量

レールの 質量 (kg/m)	50.47
曲げ剛性 $EI({ m MN}{\cdot}{ m m}^2)$	4.0376
軌道パットのバネ定数 (MN/m)	60
まくらぎ質量 (kg)	80
周期長 (m)	0.60
地盤の質量密度 (kg/m^3)	1700
地盤 1unit の厚さ (m)	0.15
地盤のポアソン比 ν	0.3

の様に複素平面上の半円で積分路を迂回させることで,特 異積分を処理した²⁾.

図3 積分路の設定

3. 解析例

(1) 解析条件

図 2 に示すように,周期長Lの連成系1ユニットを設定 する.レール支持点間中央を単位調和加振する場合を考え る.解析における軌道・地盤の各種物理量を表1に示す.地 盤の横波の伝播速度は100m/sと200m/sの2ケース設定 した.

まくらぎ下パットのバネ定数を K_{ss}=60MN/m として与 えて,地盤を剛体とした解析から求められる分散曲線を図 4 に示す.この分散曲線において波動が伝播するバンド端 点 (定在波モードが存在する点)A,B,Cの周波数は,それ ぞれ 112Hz,191Hz,274Hz となっている.

(2) 解析結果

各地盤剛性におけるレール加振点のたわみ応答 (実部) を 図 5,6 に示す.図 5 では,70Hz と 270Hz 付近に共振点が 認められる.一方図 6 では低周波域の共振点が100Hz 付近 に移動しており,図 4 の A 点の定在波モードに近い応答が 得られている様子が窺える.

次に,低バネ定数化が及ぼす影響について調べるため,2) まくらぎ下パットのバネ定数 *K_{ss}* を 5MN/m に低減した 場合¹⁾について解析を行った.この時の剛基礎上レールの

分散曲線を図 7 に,地盤上レールのたわみ応答を図 8 に示 す.パットの低バネ定数化により,バンド端 A'の周波数が K_{ss}=60MN/m の場合に比べ大幅に低下している様子が認 められる (図 7)が,これに合わせ連成系の共振点も移動し ていることがわかる.なお,図 4,7 の C, C'に対応する高 周波側の共振点は,主にレールのみが振動するモードであ るため,地盤やパッドの剛性の影響を受けず,ほとんど変 化していないことがわかる.

4. おわりに

地盤 軌道連成系の定点加振応答解析を行った.この結 果,地盤やパッドの剛性が共振特性に及ぼす影響を確認す ることができた.

参考文献

- 1) 阿部和久, 古屋卓稔, 紅露一寛: まくらぎ支持された無限長 レールの加振応答解析, 計算数理工学論文集, Vol.7,No.1, 論 文 No.06-070629, 2007.6.
- Abe,K., Fujishita,S., Koro,K., Development of Transmitting Boundary for Periodically Supported Rails, J. Mech. Sys. Trans. Log. (JSME), Vol.3(1), 44-52, 2010.