STEEL・PC 合成はりの曲げ破壊挙動に関する研究

1.	はじめに

PC 桁断面の圧縮側に鋼材を配置して見掛けのコンク リート断面を増やす STEEL・PC 合成桁(以下, SPC 桁) が提案されており実験的,解析的に効果が実証¹⁾されて いるが,その破壊挙動や外ケーブルを併用した構造に対 する検討は十分ではない.そこで,本研究では SPC 桁の 合理的な設計方法の確立を目的とし,内外ケーブル併用 の SPC 桁の載荷試験により破壊挙動の確認をするととも に,その挙動を再現可能な解析ツールの開発を行った.

2. 実験概要

図-1に供試体の形状寸法を,表-1に材料物性値を示す. 供試体は,セグメント接合部を模して,支間中央に接合 部を有し,上下2本のシアキーとPCケーブルで一体化し た分割型と,接合部のない一体型の2種類とした.プレ ストレスの導入はポストテンション方式で,内,外ケー ブルの順に緊張した.導入プレストレス量の測定値は,

キーワード PC 構造, SPC, 合成構造, 曲げ, FEM

連絡先 〒400-8511 山梨県甲府市武田 3-1-1 山梨大学土木環境工学科 TEL055-220-8530

黒沢建設(株)	正会員	〇山本	誠司
黒沢建設 (株)	正会員	平井	圭
山梨大学大学院	正会員	高橋	良輔
山梨大学大学院	正会員	檜貝	勇

内ケーブルが 341kN,外ケーブルが各 118kN であった. 実験では荷重と変位,鋼板と内部ひずみ測定用に配置した鉄筋ひずみ,外ケーブル張力を測定した.

3. 解析概要

解析には3次元非線形 FEM プログラムを用いた.図-2 に解析メッシュを示す.鋼板・コンクリートはソリッド 要素で3次元弾塑性モデルを用い,ひび割れ後コンクリ ートには多方向固定ひび割れモデル²⁾を用いた.鉄筋, 内・外ケーブルにはトラス要素を用いた.プレストレス は、導入緊張力の測定値から算出したひずみを初期ひず みとして,実験と同様の順序で導入した.PC 鋼材の応力 ひずみ関係はトリリニア型とし,材料物性値は試験値を 用いた.スタッドはバネ要素とし,作用せん断力-ずれ関 係には Ollgard らの実験式²⁾を用い,鉛直方向は剛結と した.デビエータはバネ要素で表現し,偏向角の2等分 線方向剛性を極めて大きくし,直交方向剛性をほぼ0と した.鋼板とコンクリート間は平面接合要素により摩擦 を考慮し,既往の実験³⁾⁴⁾による検証で妥当性を確認済みである.

4. 実験および解析結果および考察

図-3に荷重変位関係を、図-4に断面のひずみ分布を、 また図-5に荷重外ケーブル張力関係を示す.図-3の破線 は、コンクリート標準示方書⁵⁾の内外ケーブル併用PCの

	コンクリート(単位:N/mm²)			各種鋼材(単位:N/mm²)					
	供試体	弾性係数	圧縮強度	材料名	弹性係数	降伏強度			
	一体型	32800	43.0	鉄筋	185000	385.4			
	分離型	33500	45.6	鋼板	186000	288.7			
-				スタッド	-	245.0			
				PC 鋼材	195000	1742.5			
□ : コンクリート ■ : 鋼材 : 接合要素 ○ : バネ : トラス									
	図-2 解析メッシュ(分離型)側面および断面								

表-1 材料物性值

図−3 荷重変位関係

曲げ破壊耐力算定法による計算値である.

ー体型の実験では、430kNで荷重がわずかに低下したた め、終局と判断して除荷したが圧壊は確認できなかった. ひずみ分布からは載荷終了まで圧縮鋼材とコンクリート の一体性を確認した.解析では、408kNで圧縮側コンクリ ートの平均ひずみが-3500µに達したため、その時点を圧 壊による終局と判断した.解析は300kN付近のひずみ分布 が若干異なるものの、それ以外のひずみ分布や、破壊順 序、曲げひびわれ発生後の剛性変化、外ケーブル張力な どは概ね一致し、破壊挙動を評価できているといえる. よって本供試体は、内ケーブルが弾性限界に達した後の コンクリート圧壊による曲げ圧縮破壊と考えられる.従 って実験の最大荷重値430kNは、ほぼ曲げ耐力と考えられ、 曲げ耐力計算値にほぼ等しい.破壊挙動において、その 他に特徴的な性状は見られなかった.

分割型では、実験の終局荷重は356kN,解析は357kNで、 共に最大荷重時にコンクリート圧壊を確認した.破壊形 態は、一体型同様に曲げ圧縮破壊と言える.最大荷重値 も一体型同様、曲げ耐力式による計算値とほぼ一致した. 最大荷重が一体型よりも小さいのは、ひずみ計測鉄筋の 影響であることを解析により確認している.ひずみ分布 も一体型同様の傾向がみられ、終局まで圧縮鋼材とコン クリートはほぼ一体であった.支間中央断面のみ一体型 に比べ引張ひずみが小さいが、これはひずみ計測鉄筋が 接合部で不連続なためである.解析は接合部の離間開始

が実験と異なるが,最大荷重やひずみ分布,ケーブル張 力などの破壊挙動は概ね評価できる結果となった.

5. まとめ

本研究で得られた知見を以下にまとめる.

 一体型,分離型とも,圧縮鋼材とコンクリートは終局 までほぼ一体であり,一般的な曲げ破壊挙動を示した. 曲げ耐力はコンクリート標準示方書の内外ケーブル併用 PC はりの曲げ耐力算定法による計算値とほぼ一致した.
開発した FEM プログラムは,内外ケーブル併用の SPC はりの曲げ破壊性状を概ね評価できることを確認した. 分離型接合部の離間の定量評価は今後の課題である.

参考文献

1)例えば,野田,大沢,新井,児島: 圧縮域に補強鋼材 を用いたプレストレストコンクリート桁の力学的挙動, 土木学会論文集No. 544, pp.235-245, 1996.8

2)Ryosuke T., et. al: 3D nonlinear punching shear simulation of steel-concrete composite slab, Journal of Advanced Concrete Technology, Vol.3 No.2, pp.297-pp.308, 2005. 3)増田貴志,平坂継臣:鉄骨鉄筋コンクリート柱脚部の力

学性状に関する実験的研究(その2)-曲げモーメントを受ける柱脚の剛性および耐力-,日本建築学会論文報告集第 287号,1980.1

4)Chunyakom S., et. al:PREDICTION OF TENDON ST-RESS AND FREXURAL STRENGTH OF EXTERNALL-Y PRESTRESSED CONCRETE BEAMS, 土木学会論文 集E,Vol.62,No.1,pp.260-273.2006.3

5) 土木学会: コンクリート標準示方書[設計偏], 2008.3