鋼桁腹板の腐食部補修に向けた FRP シート接着鋼板の一軸圧縮座屈試験

高速道路総合技術研究所	正会員	○酒井修平	緒方辰男	藤野和雄
長岡技術科学大学	正会員		長井正嗣	司 宮下剛
長岡技術科学大学	学生会員			下鳥雄萌
日鉄コンポジット	正会員		小林朗	小森篤也
川崎重工業	正会員		ナ	て垣賀津雄
クラボウ	正会員			堀本歴

1. はじめに

鋼構造物の腐食に対する補修・補強工法として、当 て板や部材交換が行なわれているが、断面欠損や熱影 響等の問題がある.これに対して、炭素繊維強化プラ スチック(以下 CFRP) 接着工法が提案されており,十 分な補強効果の得られることが明らかになっている¹⁾.

従来, CFRP 接着工法では, 軸力部材や I 桁のフラン ジなど断面の垂直応力に対する補修・補強を対象とし ている.しかしながら、鋼橋では桁端部下フランジ近 傍における腹板の腐食が多い²⁾. そのため、この部位に CFRP 接着工法を適用する場合, CFRP がせん断力の卓 越による腹板の座屈変形に追従できず、端部における 剥離の発生が問題となりうる.

本研究では、座屈変形に追従し、補強効果が得られ る FRP シートの選定を目的として、様々な FRP シート を鋼板に接着し、一軸圧縮座屈試験を実施した(図-1).

2. FRP シート接着鋼板の一軸圧縮座屈試験

図-2 示すように、長さ 800mm の鋼材 (SM490YB) の中央 400mm の範囲の両面に FRP シートを接着した. 使用した FRP シートと材料定数を表-1 に示す. また, プライマーと FRP シートの間にウレタン樹脂パテ層を 設け、ウレタン樹脂パテの有無による変形性能の比較 も行うこととした. 試験体の総数は, FRP シート 6 種 類, ウレタン樹脂パテ層の有無による 2 ケース, 各試 験体が3体の計36体である.

3. 一軸圧縮座屈試験結果

全試験体の試験結果を表-2 に示す.試験の終了は, FRP シートに剥離あるいは破断が生じた時点とした. ウレタン樹脂パテの有無による相違は、ウレタン樹脂 パテ仕様では FRP シートの破断のみであったが、ウレ タン樹脂パテ無しでは FRP シートの剥離もしくは破断 が生じる結果となった.

荷重-中央変位ならびに荷重-中央ひずみを、P(高強度 ポリエチレン)を代表例として、それぞれ図-2、図-3 に 示す. 図中には、鋼板単体の弾性座屈荷重ならびに 4 章で説明する鋼と FRP シートによる合成断面としての 弾性座屈荷重も合わせて示している.

図-2 より、P は高い変形性能を有するものの、耐荷 力の向上にはあまり寄与しないことがわかる.また, 図-3 より, FRP シート引張側のひずみが繊維の破断ひ ずみに達した付近で, FRP シートに破断もしくは剥離 の生じていることがわかる.

図-1 試験状況

表-1 FRP シートと材料定数

	繊維の力学特性							
繊維の種類	弾性率	強度	破断ひずみ	厚さ				
	GPa	MPa	μ	mm				
CU (高強度型炭素繊維)	240	4,900	20,417	0.121				
CE (高弾性型炭素繊維)	640	3,430	5,359	0.116				
G (ガラス繊維)	74	3,430	46,351	0.123				
P (高強度ポリエチレン)	88	2,600	29,545	0.108				
H (ハイブリッド C/G=1:1)	383	-	-	0.121				
CS (高弾性型炭素繊維ストランドシート)	640	3,430	5,359	0.286				

4. FRP シート接着鋼板の強度評価方法

FRP シート接着鋼板の座屈強度を評価するために、 本研究では、以下の式で表される鋼材と FRP シートに よる合成断面の弾性座屈荷重式を用いることとした.

$$P_{v} = k \frac{\pi^{2} \cdot E_{s} \cdot I_{v}}{l^{2}}; \quad (k = 1.0)$$
(1)

ここで, *E*_sは鋼材の弾性係数, *I_v*は合成断面の断面2 次モーメント, 1は試験体長さである. なおここでは, 試験体全長に FRP シートが接着されているものとして 計算した. 合成断面では, 含浸樹脂を評価しないもの とし、樹脂を無視した繊維の断面積と繊維のヤング係 数を用いる.

図-4 に、補強効果の実験値および理論値の比較を示 す.補強効果は鋼単体の弾性座屈荷重 P_Eに対する,試 験における最大荷重 Pmax および合成断面の弾性座屈荷

キーワード 一軸圧縮座屈試験, FRP シート, ウレタン樹脂パテ, 破断, 剥離

連絡先 〒940-2188 新潟県長岡市上富岡町 1903-1 長岡技術科学大学 建設構造研究室 0258-46-6000(内線 6307)

試験体名				CUU1-1	CUU1-2	CUU1-3	CUN1-1	CUN1-2	CUN1-3	CEU1-1	CEU1-2	CEU1-3	CEN1-1	CEN1-2	CEN1-3
理論值·	合成断面·弹性座屈荷重	P_{V}	kN	10.57	10.82	10.47	10.57	10.57	10.63	12.27	12.02	12.08	12.13	12.08	11.99
	鋼·弾性座屈荷重	P_{E}	kN	9.57	9.80	9.48	9.57	9.57	9.63	9.69	9.47	9.52	9.57	9.52	9.45
実験値	最大荷重	$P_{\rm max}$	kN	10.96	11.18	10.91	10.82	11.06	10.93	12.32	12.03	12.90	12.13	12.29	12.28
	破断(剥離)時の中央変位	δ_D	mm	88.45	93.25	93.70	97.45	111.60	90.25	33.05	30.35	32.80	43.50	51.25	48.50
試験体名				GU1-1	GU1-2	GU1-3	GN1-1	GN1-2	GN1-3	PU1-1	PU1-2	PU1-3	PN1-1	PN1-2	PN1-3
理論值·	合成断面·弹性座屈荷重	P _V	kN	10.05	10.03	9.81	9.98	9.88	10.09	10.03	9.79	9.88	9.90	9.93	9.78
	鋼·弾性座屈荷重	P _E	kN	9.73	9.71	9.50	9.67	9.57	9.77	9.70	9.46	9.55	9.57	9.60	9.46
実験値	最大荷重	P _{max}	kN	9.86	10.36	10.50	10.77	10.62	10.93	10.13	10.76	10.71	10.05	10.36	10.24
	破断(剥離)時の中央変位	$\delta_{\rm D}$	mm	79.65	100.70	76.75	-	198.20	153.00	109.45	228.40	177.85	210.70	218.05	125.45
試験体名				HU1-1	HU1-2	HU1-3	HN1-1	HN1-2	HN1-3	CSU1-1	CSU1-2	CSU1-3	CSN1-1	CSN1-2	CSN1-3
理論値	合成断面·弹性座屈荷重	P_{V}	kN	11.29	11.37	11.14	11.19	11.06	11.25	16.32	16.17	15.94	16.85	16.11	16.17
	鋼·弾性座屈荷重	P_{E}	kN	9.68	9.75	9.54	9.58	9.47	9.64	9.68	9.58	9.43	10.04	9.54	9.58
実験値	最大荷重	$P_{\rm max}$	kN	11.21	12.07	11.03	11.96	11.35	10.85	15.34	15.15	14.81	16.44	16.47	16.31
	破断(剥離)時の中央変位	δ_D	mm	25.00	41.15	25.75	45.45	49.45	74.65	64.30	64.35	38.35	23.65	21.65	32.85

表-2 全ケースの弾性座屈荷重ならびに最大中央変位

図-2 荷重-中央変位(U:パテ有り, N:パテ無し)

重の理論値 P_v の割合として算出した.同図より,各試 験体とも理論値と近い補強効果が得られていることが わかる.しかし,CSU(ウレタン樹脂パテ仕様高弾性型 炭素繊維ストランドシート)では,実験値が理論値に対 して 10%程度低い値となった.その原因は,ストラン ドシートの剛性が高く,試験片中央で座屈が発生する 前に,シート端部で無補強部との境界で座屈した為で あると考えられる.以上より,FRP 接着鋼板の弾性座 屈強度は,座屈が試験片中央で発生する範囲では全長 に FRP シートが接着されていると仮定した式(1)から評

図-3 荷重-中央ひずみ(U:パテ有り, N:パテ無し)

価できるものと言える.一方,補強部の剛性が高く, また補強範囲が短い場合には,座屈が試験片中央での 発生する前に補強外で発生するため,有限要素解析な ど補強範囲の影響を考慮して評価する必要ある.

5. まとめ

本研究では、鋼橋の桁端部における腐食を想定し、 座屈変形に追従し、補強効果が得られる FRP シートの 選定を目的として、様々な FRP シートを接着した鋼板 の一軸圧縮座屈試験を実施した.

その結果,座屈荷重を向上させる FRP シートは,鋼 単体での弾性座屈荷重から 60%程度の補強効果が得ら れた CS(高弾性型炭素繊維ストランドシート),次いで 30%程度の補強効果が得られた CE(高弾性型炭素繊維) となった.

また,高い変形性能を有し,追従性の期待できる FRP シートは,FRP シートが破断あるいは剥離するまで 165mm 程度の変形性能を有している P(高強度ポリエチ レン),次いで105mm 程度の変形性能を有している G(ガ ラス繊維)となった.

参考文献

- 杉浦江,小林朗,稲葉尚文,本間淳史,大垣賀津雄, 長井正嗣,:鋼部材腐食損傷部の炭素繊維シートに よる補修技術に関する設計・施工法の提案,土木学 会論文集 F, Vol.65, No.1, pp.106 - 118, 2009.
- 2) 土木学会 鋼構造委員会:鋼構造の残存耐荷性能評価と耐久性向上方策研究小委員会報告書,2007.4.